Enter your keyword

Reduction Formula

Reduction formula is regarded as a method of integration. Helps us solve the powers of elementary functions, polynomials of arbitrary degree, products of transcendental functions and the functions that cannot be integrated easily, thus, easing the process of integral problem.

Below given are some of the reduction formulas:

\[\large \int Sin^{n}(x)dx=\frac{-Sin^{n-1}(x)Cos(x)}{n}+\frac{n-1}{n}Sin^{n-2}(x)dx\]

\[\large \int tan^{n}(x)dx=\frac{-tan^{n-1}(x)}{n-1}-\int tan^{n-2}(x)dx\]

\[\large \int sin^{n}(x)\: cos^{m}(x)dx=\frac{sin^{n+1}(x)cos^{m-1}(x)}{n+m}+\frac{m-1}{n+m}\: \int sin^{n}(x)\: cos^{m-2}(x)dx\]

\[\large \int x^{n}cos(x)dx=x^{n}sin(x)-n\int x^{n-1}sin(x)dx\]

\[\large \int x^{n}sin(x)dx=-x^{n}cos(x)+n\int x^{n-1}cos(x)dx\]

Solved example

Question: Evaluate the integral: $\int tan^{5}(2x)dx$

Solution:

Use:

$\int tan^{n}(u)du=\frac{1}{n-1}tan^{n-1}(u)-\int tan^{n-2}(u)du$

Substitution:

$a=2x$
$\frac{1}{2}\:da=dx$

Hence,

$\int tan^{5}(2x)dx=\frac{1}{2}\left[\int tan^{5}(a)da\right]$

$=\frac{1}{2}\left[\frac{1}{4}\:tan^{4}(a)-\int tan^{3}(a)da\right]$

$=\frac{1}{2} \left [ \frac{1}{4} \: tan^{4}(a) – \left [ \frac{1}{2} \: tan^{2}(a) – \int tan(a)da \right] \right]$

$\frac{1}{8}\:tan^{4}(a)-\frac{1}{4}\:tan^{2}(a)+\frac{1}{2}\:ln\:sec(a)+C$

$\frac{1}{8}\:tan^{4}(2x)-\frac{1}{4}\:tan^{2}(2x)+\frac{1}{2}\:ln\:sec(2x)+C$

Related Formulas
Exponential Growth FormulaGreat Circle Formula
Radius of Curvature FormulaSampling Error Formula
Harmonic Mean FormulaStirling Formula
Tangent Circle FormulaVolume of a Square Pyramid Formula