# Visualizing Unit Vectors

Unit Vectors:

The physical quantities for which both magnitude and direction are defined distinctly are known as vector quantities.The vectors are denoted by putting an arrow over the denotations representing them.

For Example: To define acceleration of a vehicle, along with its magnitude, its direction must also be specified. It can be represented in vector form as $\overrightarrow{a}~m/s^2$.

Vectors can be easily represented using the co-ordinate system in three dimensions. The vectors having magnitude of one unit are known as unit vectors. A vector can be represented in space using unit vectors. Sometimes unit vector is also known as a direction vector. A unit vector is represented using a lowercase letter with a cap (‘^’) symbol along with it.

A unit vector p Ì‚having the same direction as vector $\overrightarrow{p}$ is given as:

$\hat{p}~=~\frac{\overrightarrow{p}}{|\overrightarrow{p}|}$

Here, $\hat{p}$ represents a unit vector, $\overrightarrow{p}$ represents the vector and $|\overrightarrow{p}|$ represents the magnitude of the vector.

It must be kept in mind that any two unit vectors $\hat{p}$ and $\hat{q}$ must not be considered as equal unit vectors just because they have the same magnitude. Since, the direction in which the vectors are taken might be different therefore these unit vectors are different from each other. Therefore, to define a vector both magnitude and direction should be specified.

In Cartesian co-ordinate system, any vector $\overrightarrow{p}$ can be represented in terms of its unit vectors. The unit vectors in direction of $x,y$ and $z$ axes is given by $\hat{i},\hat{j}$ and $\hat{k}$ respectively. The position of vector $\overrightarrow{p}$ can be represented in space with respect to the origin of the given co-ordinate system as:

$\overrightarrow{p}~=~x\hat{i}~+~y\hat{j}~+~z\hat{k}$

The vector $\overrightarrow{p}$ can be resolved along the three axes as shown in the given figure. With OM as the diagonal, a parallel piped is constructed whose edges OA,OB and OC lie along the three perpendicular axes.

From the above figure,

$\overrightarrow{OA}$ = $x\hat{i}$

$\overrightarrow{OB}~~=~~y\hat{j}$

$\overrightarrow{OC}~~=~~z\hat{k}$

The vector $\overrightarrow{p}$ can be represented as

$\overrightarrow{p}~=~\overrightarrow{OM}~=~x\hat{i}~+~y\hat{j}~+~z\hat{k}$

This is known as the component form of a vector. This represents the position of given vectors in terms of the three co-ordinate axes.’

#### Practise This Question

The Undertaker brags about stopping a moving car with bare hands. To prove himself he stands infront of a moving car coming towards him and surprisingly stops the car in 10 seconds after initial contact.The work done by him in this duration will be
 NCERT Related Articles NCERT Solutions for Class 12 NCERT Solutions for Class 11 NCERT Solutions for Class 10 NCERT Solutions for Class 12 Maths NCERT Solutions for Class 11 Maths NCERT Solutions for Class 10 Maths NCERT Solutions for Class 12 Physics NCERT Solutions for Class 11 Physics NCERT Solutions for Class 10 Science NCERT Solutions for Class 12 Chemistry NCERT Solutions for Class 11 Chemistry NCERT Solutions for Class 6 NCERT Solutions for Class 12 Biology NCERT Solutions for Class 11 Biology NCERT Solutions for Class 6 Maths NCERT Solutions for Class 9 NCERT Solutions for Class 8 NCERT Solutions for Class 6 Science NCERT Solutions for Class 9 Maths NCERT Solutions for Class 8 Maths NCERT Solutions for Class 4 NCERT Solutions for Class 9 Science NCERT Solutions for Class 8 Science NCERT Solutions for Class 4 Maths NCERT Solutions for Class 5 NCERT Solutions for Class 7 NCERT Solutions for Class 7 Maths NCERT Solutions for Class 4 Science NCERT Solutions for Class 5 Maths NCERT Solutions for Class 7 Science NCERT Solutions NCERT Books NCERT Solutions for Class 5 Science