Definite integral formula An integral with upper and lower limits is a Definite Integral. A Riemann integral is a definite integral where x is restricted to lie on the real line.
\[\large \int_{a}^{\infty}f(x)dx=\lim_{b\rightarrow \infty}\left [ \int_{a}^{b}f(x)dx\right ]\]
\[\large \int_{a}^{b}f(x)dx=F(b)-F(a)\]
a and ∞, b are the lower and upper limits, F(a) is the lower limit value of the integral, F(b) is the upper limit value of the integral.
Definite Integrals Rational or Irrational Expression
- \(\begin{array}{l}\large \int_{a}^{\infty }\frac{dx}{x^{2}+a^{2}}=\frac{\pi }{2a}\end{array} \)
- \(\begin{array}{l}\large \int_{a}^{\infty }\frac{x^{m}dx}{x^{n}+a^{n}}=\frac{\pi a^{m-n+1}}{n\sin \left ( \frac{(m+1)\pi }{n} \right )},0< m+1< n\end{array} \)
- \(\begin{array}{l}\large \int_{a}^{\infty }\frac{x^{p-1}dx}{1+x}=\frac{\pi }{\sin (p\pi )},0< p< 1\end{array} \)
- \(\begin{array}{l}\large \int_{a}^{\infty }\frac{x^{m}dx}{1+2x\cos \beta +x^{2}}=\frac{\pi \sin (m\beta )}{\sin (m\pi )\sin \beta }\end{array} \)
- \(\begin{array}{l}\large \int_{a}^{\infty }\frac{dx}{\sqrt{a^{2}-x^{2}}}=\frac{\pi }{2}\end{array} \)
- \(\begin{array}{l}\large \int_{a}^{\infty }\sqrt{a^{2}-x^{2}}dx=\frac{\pi a^{2}}{4}\end{array} \)
Definite integrals of Trigonometric Functions
- \(\begin{array}{l}\large \int_{0}^{\pi }\sin(mx)\sin (nx)dx=\left\{\begin{matrix} 0 & if\;m\neq n\\ \frac{\pi }{2} & if\;m=n \end{matrix}\right.\;m,n\;positive\;integers\end{array} \)
- \(\begin{array}{l}\large \int_{0}^{\pi }\cos (mx)\cos (nx)dx=\left\{\begin{matrix} 0 & if\;m\neq n\\ \frac{\pi }{2} & if\;m=n \end{matrix}\right.\;m,n\;positive\;integers\end{array} \)
- \(\begin{array}{l}\large \int_{0}^{\pi }\sin (mx)\cos (nx)dx=\left\{\begin{matrix} 0 & if\;m+n\;even\\ \frac{2m}{m^{2}-n^{2}} & if\;m+n\;odd \end{matrix}\right.\;m,n\;integers\end{array} \)
Comments