Definite integral formula An integral with upper and lower limits is a Definite Integral. A Riemann integral is a definite integral where x is restricted to lie on the real line.

af(x)dx=limb[abf(x)dx]

abf(x)dx=F(b)F(a)

a and ∞, b are the lower and upper limits, F(a) is the lower limit value of the integral, F(b) is the upper limit value of the integral.

Definite Integrals Rational or Irrational Expression

  • adxx2+a2=π2a
  • axmdxxn+an=πamn+1nsin((m+1)πn),0<m+1<n
  • axp1dx1+x=πsin(pπ),0<p<1
  • axmdx1+2xcosβ+x2=πsin(mβ)sin(mπ)sinβ
  • adxa2x2=π2
  • aa2x2dx=πa24

Definite integrals of Trigonometric Functions

  • 0πsin(mx)sin(nx)dx={0ifmnπ2ifm=nm,npositiveintegers
  • 0πcos(mx)cos(nx)dx={0ifmnπ2ifm=nm,npositiveintegers
  • 0πsin(mx)cos(nx)dx={0ifm+neven2mm2n2ifm+noddm,nintegers

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*