Double-angle formulas can be expanded to multiple-angle functions (triple, quadruple, quintuple, and so on) by using the angle sum formulas, and then reapplying the double-angle formulas.
sin(A+B)=sinAcosB+cosAsinB

sin(A−B)=sinAcosB−cosAsinB

cos(A+B)=cosAcosB−sinAsinB

cos(A−B)=cosAcosB+sinAsinB

sinα+sinβ=2sinα+β2cosα−β2

sinα−sinβ=2sinα−β2cosα+β2

cosα+cosβ=2cosα+β2cosα−β2

cosα−cosβ=−2sinα+β2sinα−β2

sin2α=2sinαcosα

cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α

tan2α=2tanα1−tan2α

Half Angle Formulas

sin(a2)=±(1−cosa)2
cos(a2)=±(1+cosa)2
tan(a2)=1−cosasina=sina1+cosa

These formulas can also be written as:

sin(a2)=1−cos(a)2
cos(a2)=1+cos(a)2
tan(a2)=1−cos(a)1+cos(a)

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*