Fourier Series Formula

A Fourier series is an expansion of a periodic function

f(x)
in terms of an infinite sum of sines and cosines. It decomposes any periodic function or periodic signal into the sum of a set of simple oscillating functions, namely sines and cosines.

f(x)=12a0+∑n=1∞ancosnx+∑n=1∞bnsinnx

Where
ao =

1π∫−ππf(x)dx

an

1π∫−ππf(x)cosnxdx

bn

1π∫−ππf(x)sinnxdx

n = 1, 2, 3…..

Solved Example

Question: Expand the function f(x) = ekx in the interval [ â€“

Ï€
,
Ï€
] using fourier series.

Solution:

Let the Fourier series for f(x) be

f(x) =

12
ao +
∑n=1∞
(ancos(nx) + bnsin(nx))

Here

a0 =

1Ï€
∫−ππ
f(x) dx

=

1Ï€
∫−ππ
ekxdx

=

1kπ
[ekx
]−ππ

=

1kπ
(ekÏ€ â€“ e-kÏ€ )

=

2kπ
sinh( k
Ï€
)

Now,

an =

1Ï€
∫−ππ
ekx cos (nx) dx

=

e(kx)Ï€(k2+n2))
[(kcos(nx)+nsin(nx))]−ππ

=

1Ï€(k2+n2)
[ekπ(kcos(nπ)+nsin(nπ))–e−kπ[kcos(nπ)–nsin(nπ)]

=

kcos(nπ)π(k2+n2)
 
[ekπ–e−kπ]

= 2k (-1)n

sinh(kπ)π(k2+n2)

and

bn =

1Ï€
∫−ππ
ekx sin(nx) dx

=

e(kx)Ï€(k2+n2)
[ksin(nx)–ncos(nx)]−ππ

=

1Ï€(a2+n2)
[ekπ(ksin(nπ)–ncos(nπ))–e−kπ(−ksin(nπ)–ncos(nπ))]

=

−ncos(nπ)π(k2+n2)
[ekπ–e−kπ]

=

−2n(−1)nsinh(kπ)π(k2+n2)

Substituting these values of ao ,an ,bn we get

f(x) = ekx =

1kπ
sinh(k
Ï€
) +
∑n=1∞
2(−1)nsinh(kπ)π(k2+n2)
 (a
cos(nx) – n
sin(nx))
2sinh(kπ)π
12k
+
∑1∞
(−1)nk2+n2
(k
cos(nx) – n
sin(nx))]

or

ekx =

2sinh(kπ)π
12k
– k [
cosxk2+12
–
cos2xk2+22
+
cos3xk2+32
– ….]
+ [
sinxk2+12
–
2sin2xk2+22
+
3sin3xk2+32
-…..) ]

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*