A Fourier series is an expansion of a periodic function
in terms of an infinite sum of sines and cosines. It decomposes any periodic function or periodic signal into the sum of a set of simple oscillating functions, namely sines and cosines.
Where
ao =
an =
bn =
n = 1, 2, 3…..
Solved Example
Question: Expand the function f(x) = ekx in the interval [ –
,
] using fourier series.
Solution:
Let the Fourier series for f(x) be
f(x) =
a
o +
(a
ncos(nx) + b
nsin(nx))
Here
a0 =
f(x) dx
=
e
kxdx
=
[e
kx
=
(e
kπ – e
-kπ )
=
sinh( k
)
Now,
an =
e
kx cos (nx) dx
=
=
=
= 2k (-1)n
and
bn =
e
kx sin(nx) dx
=
=
=
=
Substituting these values of ao ,an ,bn we get
f(x) = ekx =
sinh(k
) +
(a
cos(nx) – n
sin(nx))
+
(k
cos(nx) – n
sin(nx))]
or
ekx =
– k
[ – + – ….] +
[ – + -…..) ]
Comments