1) 4 sin A cos B cos C
2) 4 cos A
3) 4 sin A cos A
4) 4 cos A cos B sin C
Answer: (4) 4 cos A cos B sin C
Solution:
Given that A, B, C are angles of a triangle.
⇒ A + B + C = π
⇒ 2A + 2B + 2C = 2π….(i)
Now,
sin 2A + sin 2B – sin 2C
Using the formula sin x + sin y = 2 sin(x + y)/2 cos(x – y)/2,
= 2 sin(2A + 2B)/2 cos(2A – 2B)/2 – sin [2π – 2(A + B)] {from (i)}
= 2 sin(A + B) cos(A – B) + sin 2(A + B)
= 2 sin(A + B) cos(A – B) + 2 sin(A + B) cos(A + B) {since sin 2x = 2 sin x cos x}
= 2 sin(A + B) [cos(A – B) + cos(A + B)]
= 2 sin(π – C) (2 cos A cos B)
= 4 cos A cos B sin C
Great!