1) r = R cos A
2) r = R sin A
3) R = r cos A
4) R = r sin A
Solution:
Let I denote the incentre and O denotes the circumcentre.
OI is parallel to BC
O and I are equidistant from BC
OL = IM = r (OL ⊥ BC, IM ⊥ BC)
∠BOL = ½ ∠BOC = A
OB = R
From ∆OBL, cos A = OL/OB
= OL/R
OL = R cos A
IM = R cos A
So r = R cos A
Hence option (1) is the answer.