Let A=cosθ-sinθsinθcosθ find the value of A-50 at θ=π12.
-32-12-1232
3212-1232
-32121232
123232-12
The explanation for the correct option
The given matrix, A=cosθ-sinθsinθcosθ.
The given matrix is an example of rotation matrix.
Thus, An=cosnθ-sinnθsinnθcosnθ.
Therefore, A-50=cos-50θ-sin-50θsin-50θcos-50θ
⇒A-50=cos50θsin50θ-sin50θcos50θ
Put θ=π12.
⇒A-50=cos50×π12sin50×π12-sin50×π12cos50×π12⇒A-50=cos25π6sin25π6-sin25π6cos25π6⇒A-50=cos4π+π6sin4π+π6-sin4π+π6cos4π+π6⇒A-50=cosπ6sinπ6-sinπ6cosπ6[∵sin4π+θ=sinθ,cos4π+θ=cosθ]⇒A-50=3212-1232[∵sinπ6=12,cosπ6=32]
Therefore, A-50=3212-1232.
Hence, (B) is the correct option.
If secθ+tanθ=p, then find the value cscθ.
If cosecθ=54, then find the value of (1+tanθ)(1−tanθ)(1+cotθ)(1−cotθ)