(1) sin u
(2) cosec u
(3) tan u
(4) 3 tan u
Solution:
Given (x+y) sin u = x2y2
sin u = x2y2/(x+y)
= x4(y2/x2)/x(1 + (y/x))
= x3(y/x)2/(1 + (y/x))
= x3 f(y/x)
This is a homogeneous function of degree 3.
So by Euler’s theorem
x∂z/∂x + y ∂z/∂y = nz
Here n = 3
Let z = sin u
x∂z/∂x + y ∂z/∂y = 3z
x (∂/∂x) sin u + y (∂/∂y) sin u = 3 sin u
x cos u ∂u/∂x + y cos u ∂u/∂y = 3 sin u
x ∂u/∂x + y ∂u/∂y = 3 sin u/cos u
x ∂u/∂x + y ∂u/∂y = 3 tan u
Hence option (4) is the answer.