(1) 1+ 22x2/2! + 24x4/4! + …
(2) 1+(2x)2/2! + 22x4/4! + …
(3) 1+(2x)2/2.2! + 2x4/4! + …
(4) 1+(2x)2/2.2! + (2x)4/2.4! +…
Solution:
We know ex = 1 + x/1! + x2/2! + x3/3! +…
e-x = 1 – x/1! + x2/2! – x3/3! +…
(ex + e-x) = 2 (1+x2/2! + x4/4! +…)
(1+x2/2! + x4/4! +…) = (ex + e-x) /2
(1+x2/2! + x4/4! + x6/6! +…)2 = ((ex+e-x)/2)2
= (1/4)(e2x + e-2x + 2)
= (1/4)[ 4 + 2{(2x)2/2! + (2x)4/4! + …}]
= 1 + (2x)2/2.2! + (2x)4/2.4! + ….
Hence option (4) is the answer.