JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

Important Integration Formulas for JEE Main and Advanced

In this section, students will learn the main indefinite and definite integration formulas as well as some main properties of integration. In general, integration is the reverse operation of differentiation. It is also called antiderivative. The formulas provided here will help students to easily remember them for the exam and score higher marks in the exams. 

Integration Formulas

Indefinite Integration:

  1. If f and g are functions of x such that g’(x) = f(x) then,

f(x)dx=g(x)+cddx{g(x)+c}=f(x)
 

Here, c is called the constant of integration.

  1. Standard formula:

(a) xn dx=xn+1n+1+c, n1

(b) 1xdx=loge|x|+c

(c) ∫ex dx = ex+c

(d) ax dx=axlogea+c

(e) ∫ sin x dx  = -cos x + c

(f) ∫ cos x dx  = sin x + c

(g) ∫ sec2 x dx  = tan x + c

(h) ∫ cosec2 x dx  = -cot x + c

(h) ∫ sec x tan x dx = sec x + c

(i) ∫ cosec x cot x dx = – cosec x + c

(j) ∫ cot x dx = log|sin x| + c 

(k) ∫ tan x dx = -log|cos x| + c

(l) ∫ sec x dx = log |sec x + tan x| + c

(m) ∫ cosec x dx = log |cosec x – cot x| + c

(n) 1a2x2dx=sin1(xa)+c

(o) 1a2x2dx=cos1(xa)+c

(p) 1a2+x2dx=1atan1(xa)+c

(q) 1a2+x2dx=1acot1(xa)+c

(r) 1xx2a2dx=1asec1(xa)+c

(s) 1xx2a2dx=1acosec1(xa)+c

If in place of x we have (ax+b), then the same formula is applicable but we must divide by coefficient of x or derivative of (ax+b), i.e., a.

(i) (ax+b)n dx=(ax+b)n+1a(n+1)+c, n1
 

(ii) dxax+b=1aln(ax+b)+c
 

(iii) ∫ eax+b dx = (1/a) eax+b+c

(iv) apx+q dx=1papx+qlna+c, a>0

(v)  ∫ sin(ax + b)dx = -(1/a) cos(ax + b) + c

(vi) ∫ cos(ax + b) dx = (1/a) sin(ax + b) + c

(vii)  ∫ tan(ax + b)dx = (1/a) ln sec(ax + b) + c

(viii) ∫ cot(ax+b)dx = (1/a) ln sin (ax + b) + c

(ix) ∫ sec2(ax+b)dx = (1/a) tan(ax+b) + c

(x) ∫ cosec2 (ax+b) dx = -(1/a) cot (ax+b) + c

(xi) ∫ sec (ax+b) ⋅ tan (ax+b) dx = (1/a) sec (ax+b) + c

(xii) ∫ cosec (ax+b) ⋅ cot (ax+b) dx = -(1/a) cosec (ax+b) + c

(xiii) ∫ sec x dx = ln (sec x + tan x) + c  or 

=lntan(π4+x2)

(xiv) ∫ cosec x dx = ln (cosec x – cot x) + c  or  ln tan (x/2) +c  or –ln (cosec x + cot x)+ c

(xv) dxa2x2=sin1xa+c

(xvi) dxa2+x2=12tan1xa+c

(xvii) dx|x|x2a2=1asec1xa

(xviii) dxx2+a2=ln[x+x2+a2]+c

(xix) dxx2a2=ln[x+x2a2]+c

(xx) dxa2x2=12aln|a+xax|+c

(xxi) dxx2a2=12aln|xax+a|+c

(xxii) a2x2dx=x2a2x2+a22sin1xa+c

(xxiii) x2+a2dx=x2x2+a2+a22ln(x+x2+a2a)+c

(xxiv) x2a2dx=x2x2a2a22ln(x+x2a2a)+c

(xxv) eax.sinbxdx=eaxa2+b2(asinbxbcosbx)+c

(xxvi) eax.cosbxdx=eaxa2+b2(acosbx+bsinbx)+c

  1. Theorems on integration:

(i) ∫ c f(x) dx = c ∫ f(x) dx

(ii) ∫[f(x) ± g(x)] dx = ∫f(x) dx ± ∫g(x) dx

(iii) ∫ f(x) dx =  g(x)+c

f(ax+b)dx=g(ax+b)a+c

  1. Integration by substitutions:

If we substitute f(x) = t, then f’(x) dx = dt

  1. Integration by part:

[f(x) g(x)] dx=f(x)g(x) dx(ddx(f(x))(g(x))dx)dx

(i) when you find integral ∫g(x) dx then it will not contain an arbitrary constant.

(ii) ∫g(x) dx should be taken as the same in both terms.

(iii) the choice of f(x) and g(x) is decided by ILATE rule.

  1. Integration of type

dxax2+bx+c, dxax2+bx+c, ax2+bx+cdx
 

Make the substitution

x+b2a=t

  1. Integration of type

(1)

px+qax2+bx+cdx, px+qax2+bx+cdx, (px+q)ax2+bx+cdx

Make the substitution

x+b2a=t,
then split the integral as the sum of two integrals, one containing the linear term and the other containing the constant term.

8. Integration of trigonometric functions

(1)

dxa+bsin2x or dxa+bcos2x or dxasin2x+bsinxcosx+ccos2x
put tan x = t.

(2)

dxa+bsinx or dxa+bcosx or dxa+bsinx+ccosx
  put tan (x/2) = t.

(3)

acosx+bsinx+clcosx+msinx+ndx

Express

Nr=A(Dr)+Bddx(Dr)+c
  and proceed.

  1. Integration of type ∫sin mx. cos nx dx 

Case 1. If m and n are even natural numbers then express sin mx cos nx in the terms of sines and cosines of multiples of x by using trigonometric results or De’ Moivere’s theorem.

Case 2. If m is an odd natural number then put cos x = t.

If n is an odd natural number then put sin x = t.

If both m and n are odd natural numbers then put either sin x = t or cos x = t.

Case 3. When m+n is a negative even integer then put tan x = t.

  1. Integration of type 
    x2±1x4+Kx2+1dx
    where K is any constant.

Divide numerator and denominator by x2 and put

x±1x=t

  1. Integration of type
    dx(ax+b)px+q or dx(ax2+bx+c)px+q
    Put px+q = t2
  1. Integration of type

(i)

dx(ax+b)px2+qx+r
: put ax+b = 1/t

(ii)

dx(ax2+b)px2+q
: put x = 1/t

  1. Integration of type

(i)

xαβxdx or (xα)(βx)
put x = α cos2θ + β sin2θ

(ii)

xαxβdx or (xα)(xβ)
put x = α sec2θ – β tan2θ

(iii)

dx(xα)(xβ)
: put x – α = t2 or x – β = t2

  1. Reduction formula of ∫ tann x dx, ∫ cotn x dx, ∫ secn x dx, ∫ cosecn x dx:

(i) If In = ∫ tann x dx, then

ln=tann1xn1In2

(ii) If In = ∫ cotn x dx, then

ln=cotn1xn1In2

(iii) If In = ∫ secn x dx, then 

ln=tanxsecn2xn1+n2n1In2

(iv) If In = ∫ cosecn x, then

ln=cotxcosecn2xn1+n2n1In2

Definite Integration:

Properties of definite integral:

(1) abf(x)dx=abf(t)dt

(2) abf(x)dx=baf(x)dx

(3) abf(x)dx=acf(x)dx+cbf(x)dx

(4) aaf(x)dx=0a(f(x)+f(x))dx
={20af(x)dx,f(x)=f(x)0,f(x)=f(x)

(5) abf(x)dx=abf(a+bx)dx

(6) 0af(x)dx=0af(ax)dx

(7) 02af(x)dx=0a(f(x)+f(2ax))dx
 
={20af(x)dx,f(2ax)=f(x)0,f(2ax)=f(x)

(8) If f(x) is a periodic function with period T, then 

(i)

0nTf(x)dx=n0Tf(x)dx, nZ

(ii)

0a+nTf(x)dx=n0Tf(x)dx, nZ, aR

(iii)

mtnTf(x)dx=(nm)0Tf(x)dx, m, nZ

(iv)

nta+nTf(x)dx=0af(x)dx, nZ, aR

(9) If

ψ(x)f(x)ϕ(x)for axb thenabψ(x)dxabf(x)dxabϕ(x)

(10) If m≤ f(x) ≤ M for a≤x≤b, then

m(ba)abf(x)dxM(ba)

(11) |abf(x)dx|ab|f(x)|dx

(12) If f(x) ≥0 on [a,b] then

abf(x)dx0

Leibnitz Theorem:

If F(x)=g(x)h(x)f(t)dt, then
dF(x)dx=h(x)f(h(x))g(x)f(g(x))
 

Definite integrals as a limit of sum:

abf(x)dx=limnr=0n1hf(a+rh)=limnr=0n1(ban)f(a+(ba)rn)

Up Next: Important Parabola Formulas For JEE Maths

Indefinite Integration – Video Lesson

Indefinite Integration - Video Lesson
993

Indefinite-Integration Problems

Indefinite-Integration Problems
79,907

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*