JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

You visited us 5 times! Enjoying our articles? Unlock Full Access!

Integration of Functions

Integration is the process of finding the antiderivative. The integration of g′(x), with respect to dx, is given by

∫ g′(x) dx = g(x) + C, where C is the constant of integration.

The two types of integrals are

  • Definite integral: An integral with limits, namely upper and lower limits, without the constant of integration.
  • Indefinite integral: An integral without limits and with an arbitrary constant.

This article covers standard integrals, properties of integration, important formulas and examples of integration which helps students to have a deep knowledge of the topic.

Standard Integrals

Integrals of Rational and Irrational Functions

xndx=xn+1n+1+C,n11xdx=ln|x|+Ccdx=cx+Cxdx=x22+Cx2dx=x33+C1x2dx=1x+C
xdx=2xx3+C11+x2dx=arctanx+C11x2dx=arcsinx+C

Integrals of Trigonometric Functions

sinxdx=cosx+Ccosxdx=sinx+Ctanxdx=ln|secx|+Csecxdx=ln|tanx+secx|+C
sin2xdx=12(xsinxcosx)+Ccos2xdx=12(x+sinxcosx)+Ctan2xdx=tanxx+Csec2xdx=tanx+C

Integrals of Exponential and Logarithmic Functions

lnxdx=xlnxx+Cxnlnxdx=xn+1n+1lnxxn+1(n+1)2+Cexdx=ex+Caxdx=axlna+C

Properties of  Integration

Property 1:

aaf(x)dx=0

Property 2:

abf(x)dx=baf(x)dx

Property 3:

abf(x)dx=abf(t)dt

Property 4:

abf(x)dx=acf(x)dx+abf(x)dx

Property 5:

(i) abf(x)dx=abf(a+bx)dx
(ii) 0af(x)dx=0af(ax)dx

 

⇒ Also Read: Definite and Indefinite Integration

Useful Formulas

  • eaxsinbx=eaxa2+b2[asinbxbcosbx]
  • eaxcosbx=eaxa2+b2[acosbx+bsinbx]
  • ex(f(x)+f(x))=exf(x)

Illustration:

ex(sinx+cosx)dx=exsinx+c

 

ex(lnx+1x)dx=exlnx+c

Integration of Trigonometric Functions

Type 1:

I=sinmxcosnxdx

1. If m is odd, put cos x = t

2. If n is odd, put sin x = t

3. If m, n rationales then put tan x = t

4. If both are even, then use the reduction method.

Qcos3xsin6xdx=1t2t6dt

Where t = sin x

=t6t4dt
=15sin5x+13sin3x+c

Type 2:

dxacosx+bsinx+c

Put t = tan (x/2)

Illustration

dx2+sinx
t=tan(x2)
dx=2dt1+t2
=2dt1+t22+2t1+t2
dtt2+t+1
=23tan1(2t+13)
=23tan1(2tanx2+13)+c

Some Useful Substitutions for Irrational Functions

  • Form 1 :
    linearQuadraticdx
Substitute linear=mQudratic+n
  • Form 2:
    dxlinlin1,linlin1dx,lin1lindx
Substitute lin1=t2
  • Form 3:
    1linQuadx

Substitute lin = 1/t

  • Form 4:
    dx(ax2+b)(x2+d)

Substitute x = 1/t and then u2 for at2 + b

Integration Formulas

  1. abf(x)dx=abf(t)dt
  2. abf(x)dx=baf(x)dx
  3. abf(x)dx=acf(x)dx+cbf(x)dx
  4. abf(x)dx=abf(a+bx)dx
  5. 02af(x)dx=0af(x)dx+0af(2ax)dx
    =0 if,f(2ax)=f(x)
    and
    =20af(x) if f(2ax)=f(x)
  6. aaf(x)dx={0iff(x) is odd20af(x)dxiff(x) is even

Problems on Integration

Illustration:

02x2[x]dx=01x2[x]dx+12x2[x]dx
=01x2.0dx+12x2[1]dx
=0+x33|12
=813=73

Illustration:

π/6π/3sinxsinx+cosxdx
I=cosxsinx+cosxdx \(by xπ2x)
2I=π/6π/3sinx+cosxsinx+cosx=π/6π/31dx=π6
I=π12

Illustration:

I=sin100xcos99x

Here, f(2π – x) = f(x)

Or

I=20πsin100xcos99x
=20πsin100(πx)cos99(πx)

I = -I

I = 0

Illustration:

55x3=0 as f(x) is odd

Leibnitz’s rule

ddxu(x)v(x)f(t)dt=f(v(x))dv(x)dxf(u(x))u(x)

Practice Problems

Problem 1.

If x2x31logtdt=y find
dydx=x(x1)(logx)1

Problem 2.

If sinx1t2f(t)dt=1sinx.
where x ∈ (0, π/2), find f(1/√3).

Problem 3. 

If f(2)=6,f(2)=148. Findlimx26f(x)4t3x2dt=18.

Problem 4. 

limx0xex2dx0xe2x2dx=0

Integration by Parts

uvdx=uvdxu(vdx)dx

Illustration:

Q.

nx=nx.1dx
=xnx1x.xdx
=xnxx

Q.

xexdx=xexdx(1)(exdx)dx
=xexexdx
=xexex

Integration of Irrational Algebraic Functions

Type

dx(ax+b)kpx+q

Q.

x(x3)x+1dx

Put x + 1 = t2, we get

I=(t21)2tdt(t24)t=2t21t24dt
=21+3t24dt
=2t+32n|t2t+2|+c
=2x+1+32n|x+12x+1+2|+c

02af(x)dx=0af(x)dx+0af(2ax)dx

= 0 if f(2a – x) = -f(x)

=20af(x) if f(2ax)=f(x)

Optimisation of Area for Greatest and Least Values

Illustration:

If area by y = f(x) and y = x2 + 2 between abscissa x = 2 and x = α is α3 – 4α2 + 8. Find f(x). 

Answer:

α34α2+8=2α(x2+2f(x))dx

Differentiating with Labniz equation,

3α28α=α2+2f(α)
f(x)=2x2+8x+2

Integrations Important JEE Main Questions

732

Definite Integration JEE Questions

80,755

Indefinite Integration JEE Questions

77,284

 

Solved Problems on Integration

Problem 1:

dxcos(xa)cos(xb)=

Solution:

dxcos(xa)cos(xb)=1sin(ab)sin{(xb)(xa)}cos(xa).cos(xb)dx=1sin(ab){sin(xb)cos(xb)sin(xa)cos(xa)}dx=cosec(ab)logcos(xa)cos(xb)+c

Problem 2:

dxx+a+x+b=

Solution:

dxx+a+x+b=x+ax+b(x+a)(x+b)dx=1(ab)(x+a)1/2dx1(ab)(x+b)1/2dx=23(ab)[(x+a)3/2(x+b)3/2]+c

Problem 3:

x3x2(1x2) dx=

Solution:

x3x2(1x2)dx=x(1x2)(1x2)dx21x2dx=xdx211x2dx=x22+log(x1x+1)+c.

Problem 4:

sin8xcos8x12sin2xcos2x dx=

Solution:

sin8xcos8x12sin2xcos2xdx=(sin4x+cos4x)(sin4xcos4x)(sin2x+cos2x)22sin2xcos2xdx=(sin4xcos4x)dx=(sin2x+cos2x)(sin2xcos2x)dx=(sin2xcos2x)dx=cos2xdx=sin2x2+c

Problem 5:

x2dx(a+bx)2=

Solution:
Put a + bx = t ⇒ x = (t – a)/b and dx = dt/b

I=(tab)2×1t2dtb=1b2(12at+a2.t2)dt=1b2[t2alogta2t]=1b2[x+ab2ablog(a+bx)a2b1(a+bx)]

Problem 6: Solve

2cosx+3sinx4cosx+5sinxdx

Solution:

Problem of type

acosx+bsinx+pccosx+dsinx+qdx,aex+bex+cdex+fex+hdx
can be solved by
Nr=nDr+mDr

Now,

Let 2 cos x + 3 sin x = a( 4 cos x + 5 sin x) + b(-4 sin x + 5 cos x)

Solving by comparing, we get

a=2341b=241
I=2341241(4sinx+5cosx4cosx+5sinx)dx
=2341x241n|4cosx+5sinx|+c

Problem 7:  Find area between y2 ≤ 4x, x2 + y2 ≥ 2x and x ≤ y + 2 in first quadrant.

Answer:

Problems on integration example 4

A=0(3+1)24xdxar(semicircle)ar(ABC)
=4[2x3/23]0(3+1)2π212(3+1)22(3+1)
=(3+1)33π2

Most Important Questions from Definite Integration for JEE Advanced

4,728

Frequently Asked Questions

Q1

What do you mean by integration in maths?

Integration is the process of finding the antiderivative of a function.

Q2

What is the integral of x?

The integral of x = (x2/2) + C, where C is the constant of integration.

Q3

What is the integral of sin x?

Integral of sin x =-cos x + C

Q4

Give two applications of integration.

Integration is used to find the area under a curve. It is also used to find the velocity and trajectory of a satellite.

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*