JEE Main Maths Determinants previous year questions with solutions are prepared by BYJU’s expert teachers. JEE aspirants will find solutions for JEE Main Maths Determinants previous year questions. Practising these questions will help students to understand the exam pattern and prepare accordingly. Students can download the PDF of JEE Main Determinants previous year questions with solutions.

Download JEE Main Maths Determinants Previous Year Questions With Solutions PDF

Question 1:

Consider the following system of equations:

x + 2y – 3z = a

2x + 6y – 11 z = b

x – 2y + 7z = c

Where a, b and c are real constants. Then, the system of equations

(a) has a unique solution when 5a = 2b + c

(b) has an infinite number of solutions when 5a = 2b + c

(c) has no solution for all a, b and c

(d) has a unique solution for all a, b and c

Solution:

Given equations are x + 2y – 3z = a

2x + 6y – 11 z = b

x – 2y + 7z = c

\(\begin{array}{l}\Delta =\begin{vmatrix}1 & 2 & -3 \\2 & 6& -11 \\1 & -2 & 7 \\\end{vmatrix}\end{array} \)

= 20 – 50 + 30

= 0

\(\begin{array}{l}\Delta_{1} =\begin{vmatrix}a & 2 & -3 \\b & 6& -11 \\c & -2 & 7 \\\end{vmatrix}\end{array} \)

= 20a – 2(7b + 11c) – 3(- 2b – 6c)

= 20a – 14b – 22c + 6b + 18c

= 20a – 8b – 4c

= 4(5a – 2b – c)

\(\begin{array}{l}\Delta _{2} = \begin{vmatrix} 1 & a & -3 \\ 2& b & -11\\ 1& c & 7 \end{vmatrix}\end{array} \)

= 7b+ 11c – a(25) – 3(2c – b)

= 7b+ 11c – 25a – 6c + 3b

= – 25a + 10b+ 5c

= – 5(5a – 2b- c)

\(\begin{array}{l}\Delta _{3} = \begin{vmatrix} 1 & 2 & a\\ 2& 6 & b\\ 1& -2 & c \end{vmatrix}\end{array} \)

= 6c + 2b- 2(2c – b) – 10a

= – 10a + 4b+ 2c

= – 2(5a – 2b- c)

For infinite solution,

Ξ” = Ξ”1 = Ξ”2 = Ξ”3 = 0

β‡’ 5a = 2b + c

Then, the system of equations has an infinite number of solutions when 5a = 2b + c.

Hence, option (b) is the answer.

Question 2:

Let

\(\begin{array}{l}P=\begin{bmatrix} -30 &20 &56 \\ 90&140 &112 \\ 120&60 &14 \end{bmatrix}\end{array} \)
and
\(\begin{array}{l}A=\begin{bmatrix} 2 &7 &\omega ^2 \\ -1&-\omega &1 \\ 0&-\omega &-\omega+1 \end{bmatrix}\end{array} \)
where Ο‰ = (- 1 + i √3) / 2, and I3 be the identity matrix of order 3. If the determinant of the matrix (P-1AP- I3)2 is Ι‘Ο‰2, then the value of Ι‘ is equal to

Solution:

|P-1AP – I|2

= |(P-1AP – I) (P-1AP – I)|

= |P-1APP-1 AP – 2P-1AP + I|

= |P-1A2P – 2P-1AP + P-1IP|

= |P-1(A2 – 2A + I) P|

= |P-1(A – I)2 P|

= |P-1| |A – I|2 |P|

= |A – I|2

\(\begin{array}{l}=\begin{bmatrix} 1 &7 &\omega ^2 \\ -1&-\omega-1 &1 \\ 0&-\omega &-\omega \end{bmatrix}^2\end{array} \)

= (1 (Ο‰ (Ο‰ + 1) + Ο‰) – 7Ο‰ + Ο‰2 . Ο‰)2

= (Ο‰2 + 2Ο‰ – 7Ο‰ + 1)2

= (Ο‰2 – 5Ο‰ + 1)2

= (- 6Ο‰)2

= 36Ο‰2

β‡’ Ι‘ = 36

Hence, the value of Ι‘ is equal to 36.

Question 3:

The maximum value of

\(\begin{array}{l}f(x) =\begin{vmatrix} sin^2x &1+cos^2x &cos2x \\ 1+sin^2x&cos^2x &cos2x \\ sin^2x&cos^2x &sin2x \end{vmatrix}\end{array} \)
, x ∈ R is:

(a) √7

(b) √5

(c) 5

(d) 3 / 4

Solution:

Given that

\(\begin{array}{l}f(x) =\begin{vmatrix} sin^2x &1+cos^2x &cos2x \\ 1+sin^2x&cos^2x &cos2x \\ sin^2x&cos^2x &sin2x \end{vmatrix}\end{array} \)

C1 β†’ C1 + C2

\(\begin{array}{l}\begin{vmatrix} 2 &1+cos^2x &cos2x \\ 2&cos^2x &cos2x \\ 1&cos^2x &sin2x \end{vmatrix}\end{array} \)

R1 β†’ R1 – R2

\(\begin{array}{l}\begin{vmatrix} 0 &1 &0 \\ 2&cos^2x &cos2x \\ 1&cos^2x &sin2x \end{vmatrix}\end{array} \)

= (–1)[2 sin2x – cos2x] = cos2x – 2sin2x

Maximum value = √5

Hence, option (b) is the answer.

Question 3:

The system of equations kx + y + z = 1, x + ky + z = k and x + y + zk = k2 has no solution if k is equal to

(a) – 2

(b) – 1

(c) 1

(d) 0

Solution:

Given equations are kx + y + z = 1

x + ky + z = k

x + y + zk = k2

These equations can be written as:

\(\begin{array}{l}\Rightarrow A=\begin{bmatrix}k & 1 & 1 \\1 & k & 1 \\ 1& 1& k \\\end{bmatrix},B = \begin{bmatrix}x \\y \\z\end{bmatrix},C=\begin{bmatrix}1 \\ k\\k^{2}\end{bmatrix}\end{array} \)

The condition for no solution to the given system of equations is |A| = 0.

\(\begin{array}{l}D=\begin{vmatrix} k &1 &1 \\ 1&k &1 \\ 1&1 &k \end{vmatrix}=0\end{array} \)

β‡’ k(k2 – 1) – (k – 1) + (1 – k) = 0

β‡’ (k – 1) (k2 + k – 1 – 1) = 0

β‡’ (k – 1) (k2 + k – 2) = 0

β‡’ (k –1) (k –1) (k + 2) = 0

β‡’ k = 1, k = -2

For k = 1, the given system of equations is identical. So, the given equations have no solution when k = -2.

Hence, option (a) is the answer.

Question 4:

If

\(\begin{array}{l}A=\begin{bmatrix} 2 &3 \\ 0&-1 \end{bmatrix}\end{array} \)
, then the value of det (A4) + det (A10 – Adj (2A))10) is equal to

Solution:

\(\begin{array}{l}\\|A|=-2\\det(A^4)= |A|^{4}=16\\A^{10}=\begin{bmatrix} 2^{10} & 2^{10}-1\\ 0&1 \end{bmatrix}=\begin{bmatrix} 1024 &1023 \\ 0&1 \end{bmatrix}\\ 2A=\begin{bmatrix} 4 &6 \\ 0&-2 \end{bmatrix}\\ adj(2A)=\begin{bmatrix} -2 &-6 \\ 0 &4 \end{bmatrix}\\ (adj(2A))^{10}=2^{10}\begin{bmatrix} 1 &3 \\ 0&-2 \end{bmatrix}^{10}\\ =2^{10}\begin{bmatrix} 1 &-(2^{10}-1) \\ 0&2^{10} \end{bmatrix}\\ =2^{10}\begin{bmatrix} 1 &-1023 \\ 0&1024 \end{bmatrix}\\\end{array} \)

|A10 – adj (2A)10| = 0

|A|4 = 16

Hence, the value of det (A4) + det (A10 – Adj (2A))10) = 16

Question 5:

If x, y, z are in arithmetic progression with common difference d, x β‰  3d, and the determinant of the matrix

\(\begin{array}{l}\begin{bmatrix} 3 &4\sqrt{2} &x \\ 4&5\sqrt{2} &y \\ 5&k &z \end{bmatrix}=0\\\end{array} \)
is zero, then the value of k2 is

(a) 6

(b) 36

(c) 72

(d) 12

Solution:

x, y, z are in AP, so x + z = 2y

And

\(\begin{array}{l}\\\begin{bmatrix} 3 &4\sqrt{2} &x \\ 4&5\sqrt{2} &y \\ 5&k &z \end{bmatrix}=0\\ R_{1}\rightarrow R_{1}+R_{3}-2R_{2}\\ \begin{bmatrix} 0 &4\sqrt{2}+k-10\sqrt{2} &0 \\ 4&5\sqrt{2} &y \\ 5&k &z \end{bmatrix}=0\\ -(k-6\sqrt{2})(4z-5y)=0\\ k=6\sqrt{2}\\ 4z=5y(not\ possible)\\\Rightarrow k^{2}=72\end{array} \)

Hence, option (c) is the answer.

Question 6:

If 1, log10 (4x – 2) and log10 [4x + (18 / 5)] are in arithmetic progression for a real number x, then the value of the determinant

\(\begin{array}{l}\begin{vmatrix} 2[x-(1/2)] &x-1 &x^{2} \\ 1&0 &x \\ x&1 &0 \end{vmatrix}\end{array} \)
is equal to:

Solution:

1, log10 (4x – 2) and log10 [4x + (18 / 5)] are in arithmetic progression.

2. log10 (4x – 2) = 1 + log10 [4x + (18 / 5)]

log10 [4x – 2]2 = log10 [10 . [4x + (18 / 5)]

[4x – 2]2 = 10 . [4x + (18 / 5)]

(4x)2 + 4 – 4 . 4x = 10 . 4x + 36

(4x)2 – 14 . 4x – 32 = 0

(4x)2 + 2 . 4x – 16 . 4x – 32 = 0

4x [4x + 2] – 16 [4x + 2] = 0

4x = – 2 or 4x = 16

Rejected the value of 4x = – 2

Therefore,

\(\begin{array}{l}\begin{vmatrix} 2[x-(1/2)] &x-1 &x^{2} \\ 1&0 &x \\ x&1 &0 \end{vmatrix}=\begin{vmatrix} 3 &1 &4 \\ 1&0 &2 \\ 2&1 &0 \end{vmatrix}\end{array} \)

= 3 (-2) – 1 (0 – 4) + 4 (1 – 0)

= – 6 + 4 + 4

= 2

Question 7:

Let Ξ±, Ξ², Ξ³ be the roots of the equations, x3 + ax2 + bx + c = 0, (a, b, c ∈ R and a, b and a, b β‰  0). The system of the equations (in u, v, w) given by Ξ±u + Ξ²v + Ξ³w = 0; Ξ²u + Ξ³v + Ξ±w = 0; Ξ³u + Ξ±v + Ξ²w = 0 has non-trivial solutions, then the value of a2 / b is

(a) 5

(b) 1

(c) 0

(d) 3

Solution:

Let Ξ±, Ξ², Ξ³ be the roots of the equations, x3 + ax2 + bx + c = 0

Given that Ξ±u + Ξ²v + Ξ³w = 0; Ξ²u + Ξ³v + Ξ±w = 0; Ξ³u + Ξ±v + Ξ²w = 0 has non-trivial solutions,

For non-trivial solutions,

\(\begin{array}{l}\begin{vmatrix} \alpha &\beta &\gamma \\ \beta&\gamma &\alpha \\ \gamma &\alpha &\beta \end{vmatrix}=0\end{array} \)

Ξ±3 + Ξ²3 + Ξ³3 – 3Ξ±Ξ²Ξ³ = 0

(Ξ± + Ξ² + Ξ³) ((Ξ± + Ξ² + Ξ±)2 – 3 βˆ‘Ξ±Ξ²) = 0

(-a) [a2 – 3b] = 0

a2 = 3b [because a β‰  0]

a2/b = 3

Hence, option (d) is the answer.

Question 8:

The solutions of the equation

\(\begin{array}{l}\begin{vmatrix} 1+sin^{2}x &sin^{2}x &sin^{2}x \\ cos^{2}x &1+cos^{2}x &cos^{2}x \\ 4sin2x&4 sin2x &1+4sin2x \end{vmatrix}=0\end{array} \)
, (0 < x < Ο€), are:

(a) Ο€/6, 5Ο€/6

(b) 7Ο€/12, 11Ο€/12

(c) 5Ο€/12, 7Ο€/12

(d) Ο€/12, Ο€/6

Solution:

\(\begin{array}{l}R_{1}\rightarrow R_{1}+R_{2}\\ \begin{vmatrix} 2 &2 &1 \\ cos^{2}x&1+cos^{2}x &cos^{2}x \\ 4sin2x&4sin2x &1+4sin2x \end{vmatrix}=0\\ C_{1}\rightarrow C_{1}-C_{2}\\ \begin{vmatrix} 0 &2 &1 \\ -1&1+cos^{2}x &cos^{2}x \\ 0&4sin2x &1+4sin2x \end{vmatrix}=0\\\end{array} \)

Therefore, 2 + 8 sin 2x – 4 sin 2x = 0

β‡’ sin 2x = – 1 / 2

β‡’ x = 7Ο€/12, 11Ο€/12

Hence, option (b) is the answer.

Question 9:

Let the system of linear equations

4x + Ξ»y + 2z = 0

2x – y + z = 0

μx + 2y + 3z = 0, λ, μ ∈ R

has a non-trivial solution. Then which of the following is true?

(a) μ = 6, λ ∈ R

(b) λ = 2, μ ∈ R

(c) λ = 3, μ ∈ R

(d) ΞΌ = – 6, Ξ» ∈ R

Solution:

Given, 4x + Ξ»y + 2z = 0

2x – y + z = 0

ΞΌx + 2y + 3z = 0

For a non-trivial solution,

Ξ” = 0

\(\begin{array}{l}\begin{vmatrix} 4 &\lambda &2 \\ 2&-1 &1 \\ \mu&2 &3 \end{vmatrix}=0\end{array} \)

4 (- 3 – 2) – Ξ» (6 – ΞΌ) + 2 (4 + ΞΌ) = 0

– 20 – 6Ξ» + λμ + 8 + 2ΞΌ = 0

– 12 – 6Ξ» + λμ + 2ΞΌ = 0

– 6 (Ξ» + 2) + ΞΌ (Ξ» + 2) = 0

(Ξ» + 2) (ΞΌ – 6) = 0

μ = 6, λ ∈ R [since for λ = -2 the first two equations will become identical]

Hence, option (a) is the answer.

Question 10:

Let A = [aij] and B = [bij] be two 3 Γ— 3 real matrices such that bij = (3)(i+jβˆ’2)aji, where i, j = 1, 2, 3. If the determinant of B is 81, then the determinant of A is

(a) 1/9

(b) 1/81

(c) 1/3

(d) 3

Solution:

bi = (3)(i+jβˆ’2)aji

B =

\(\begin{array}{l}\begin{bmatrix} 3^{0}a_{11} & 3a_{21} &3^{2}a_{31} \\ 3a_{12}&3^{2} a_{22} & 3^{3}a_{32}\\ 3^{2}a_{13}& 3^{3}a_{23} & 3^{4}a_{33} \end{bmatrix}\end{array} \)

\(\begin{array}{l}\left | B \right | = \begin{vmatrix} 3^{0}a_{11} & 3a_{21} &3^{2}a_{31} \\ 3a_{12}&3^{2} a_{22} & 3^{3}a_{32}\\ 3^{2}a_{13}& 3^{3}a_{23} & 3^{4}a_{33} \end{vmatrix}\end{array} \)

Taking 32 common each from C3 and R3

\(\begin{array}{l}\left | B \right | = 81\begin{vmatrix} a_{11} & 3a_{21} &a_{31} \\ 3a_{12}&3^{2} a_{22} & 3a_{32}\\ a_{13}& 3a_{23} & a_{33} \end{vmatrix}\end{array} \)

Taking 3 common each from C2 and R2

\(\begin{array}{l}\left | B \right | = 81\times 9\begin{vmatrix} a_{11} & a_{21} &a_{31} \\ a_{12}& a_{22} & a_{32}\\ a_{13}& a_{23} & a_{33} \end{vmatrix}\end{array} \)

Given Η€BΗ€ = 81

81 = 81Γ—9 Η€AΗ€ [since |A| = |A|T]

Η€AΗ€ = 1/9

Hence, option (a) is the answer.

Related video

Matrices and Determinants- Important Topics

Important Questions for JEE Matrices and Determinants

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*