The JEE Main Maths Matrices previous year questions with solutions are given here. JEE aspirants are recommended to solve the previous year JEE Main Matrices questions with solutions. We have provided the solutions of the JEE Main Matrices previous year questions in a detailed method. Students can easily download the JEE Main Matrices previous yearsβ questions with solutions PDF for free.
Question 1:
Let M be any 3 Γ 3 matrix with entries from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements of MTM is seven, is
Solution:
Let
\(\begin{array}{l}M = \begin{bmatrix}a & b & c \\d & e & f \\ g& h & i \\\end{bmatrix}\end{array} \)
Then
\(\begin{array}{l}M^{T} = \begin{bmatrix}a & d & g \\b & e & h \\c& f & i \\\end{bmatrix}\end{array} \)
Sum of the diagonal elements of MTM = a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 = 7
Case IβΆ Seven (1βs) and two (0βs)
9C2 = 36
Case IIβΆ One (2) and three (1βs) and five (0βs)
9!/5!3! = 504
The sum of diagonal elements = 36 + 504 = 540.
Question 2:
Let A and B be 3 Γ 3 real matrices such that A is a symmetric matrix and B is a skew-symmetric matrix. Then the system of linear equations (A2B2 β B2A2)X = O, where X is a 3Γ1 column matrix of unknown variables, and O is a 3Γ1 null matrix, has:
(a) a unique solution
(b) exactly two solutions
(c) infinitely many solutions
(d) no solution
Solution:
Since A is a symmetric matrix, AT = A.
B is a skew-symmetric matrix, BT = -B.
Let A2B2 β B2A2= P
PT = (A2B2 β B2A2)T
= (A2B2)T β (B2A2)T
= (B2)T (A2)Tβ (A2)T (B2)T
= B2A2 β A2B2
So P is a skew-symmetric matrix.
\(\begin{array}{l}\begin{bmatrix} 0 & a & b\\ -a & 0 &c \\ -b &-c & 0 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\end{array} \)
So ay + bz = 0 β¦(1)
βax + cz = 0 β¦(2)
βbx β cy = 0 …(3)
From equation (1), (2), (3)
Ξ = 0 and Ξ1 = Ξ2= Ξ3 = 0
Therefore, the system of equations has an infinite number of solutions.
Hence, option (c) is the answer.
Question 3:
If for the matrix,
\(\begin{array}{l}A = \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix},\end{array} \)
AAT = I2, then the value of Ξ±4 + Ξ²4 is:
(a) 1
(b) 3
(c) 2
(d) 4
Solution:
AAT = I2
\(\begin{array}{l}A A^{T}= \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix}\begin{bmatrix} 1 & \alpha \\ -\alpha & \beta \end{bmatrix} = \begin{bmatrix}1 & 0 \\0 & 1\\\end{bmatrix}\end{array} \)
1 + Ξ±2 = 1
Ξ±2 = 0
Ξ±2 + Ξ²2 = 1
Ξ²2 = 1
So, Ξ±4 = 0 and Ξ²4 = 1
Hence, Ξ±4 + Ξ²4 = 1
Hence, option (a) is the answer.
Question 4:
Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is
(a) 6
(b) 1
(c) 4
(d) 12
Solution:
Let
\(\begin{array}{l}A = \begin{bmatrix} a &b \\ b&c \end{bmatrix}\\\end{array} \)
\(\begin{array}{l}A^{2}=\begin{bmatrix} a &b \\ b&c \end{bmatrix}\begin{bmatrix} a &b \\ b&c \end{bmatrix}=\begin{bmatrix} a^2+b^2 &ab+bc \\ ab+bc&c^2+b^2 \end{bmatrix}\\\end{array} \)
a2 + 2b2 + c2 = 1
a = 1, b = 0, c = 0
a = 0, b = 0, c = 1
a = β1, b = 0, c = 0
c = β1, b = 0, a = 0
The possible number of matrices = 4.
Hence, option (c) is the answer.
Question 5:
The value of
\(\begin{array}{l}\begin{vmatrix} (a+1)(a+2)& a+2 & 1\\ (a+2)(a+3)& a+3 & 1\\ (a+3)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)
is
(a) -2
(b) (a + 1) (a + 2) (a + 3)
(c) 0
(d) (a + 2) (a + 3) (a + 4)
Solution:
Given matrix is
\(\begin{array}{l}\begin{vmatrix} (a+1)(a+2)& a+2 & 1\\ (a+2)(a+3)& a+3 & 1\\ (a+3)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)
C1 β C1 – C2
β =
\(\begin{array}{l}\begin{vmatrix} (a+2)a& a+2 & 1\\ (a+1)(a+3)& a+3 & 1\\ (a+2)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)
C2 β C2 – C3
\(\begin{array}{l}\Delta =\begin{bmatrix} (a+2)a& a+1 & 1\\ (a+1)(a+3)& a+2 & 1\\ (a+2)(a+4)& a+3 & 1 \end{bmatrix}\end{array} \)
R2 β R2 – R1 and R3 β R3 – R1
\(\begin{array}{l}\Delta =\begin{bmatrix} a^{2}+2a& a+1 & 1\\ 2a+3& 1 & 0\\ 4a+8& 2 & 0 \end{bmatrix}\end{array} \)
= 6 – 8
= -2
Hence, option (a) is the answer.
Question 6:
The total number of 3 Γ 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to
Solution:
\(\begin{array}{l}AA^T=\begin{bmatrix} x &y &z \\ a&b &c \\ d &e &f \end{bmatrix}\begin{bmatrix} x&a &d \\ y&b &e \\ z&c &f \end{bmatrix}\\ =\begin{bmatrix} x^2+y^2+z^2 &ax+by+cz &dx+ey+fz \\ ax+by+cz& a^2+b^2+c^2 &ad+be+cf \\ dx+ey+fz &ad+be+cf & d^2+e^2+f^2 \end{bmatrix}\end{array} \)
Tr (AAT) = x2 + y2 + z2 + a2 + b2 + c2 + d2 + e2 + f2 = 9
allβ1 = 1
one 3, rest = 0 β (9! / 8!) = 9
two 2 , one 1 and rest 0 β (9!) / (2! 6!) = 63 Γ 4 = 252
one 2 , five 1, rest 0 β (9!) / (5! 3!) = 63 Γ 8 = 504
Total number of 3 Γ 3 matrices = 766
Question 7:
Let
\(\begin{array}{l}A=\begin{bmatrix} a_{1}\\ a_{2} \end{bmatrix}\end{array} \)
and \(\begin{array}{l}B=\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}\end{array} \)
be two 2 Γ 1 matrices with real entries such that A = XB, where \(\begin{array}{l}X = \frac{1}{\sqrt3}\begin{bmatrix} 1 &-1 \\ 1&k \end{bmatrix}\end{array} \)
, and k β R. If (a12 + a22) = (2 / 3) (b12 + b22) and (k2 + 1) b22 β – 2b1b2, then the value of k is
Solution:
Given that A = XB
\(\begin{array}{l}\frac{1}{\sqrt3}\begin{bmatrix} b_{1}-b_{2}\\ b_{1}+kb_{2} \end{bmatrix}=\begin{bmatrix} a_{1}\\ a_{2} \end{bmatrix}\end{array} \)
b1 – b2 = β3a1
3a12 = b12 + b22 – 2b1b2 ..(i)
b1 + kb2 = β3a2
3a22 = b12 + k2b22 + 2kb1b2 ..(ii)
Adding both equations, 3 (a12 + a22) = 2b12 + (k2 + 1) b22 + 2b1b2 (k – 1)
(k2 – 1) b22 + 2b1b2 (k – 1) = 0
(k – 1) [(k + 1) b22 + 2b1b2] = 0
k = 1
Question 8:
Let A be a 2 Γ 2 real matrix with entries from {0,1} and A β 0. Consider the following two statements:
(P) If A β I2 , then |A| = -1
(Q) If |A| =1 , then tr(A) = 2,
where I2 denotes 2 Γ 2 identity matrix, and tr(A) denotes the sum of the diagonal entries of A. Then:
(a) Both (P) and (Q) are false
(b) (P) is true, and (Q) is false
(c) Both (P) and (Q) are true
(d) (P) is false, and (Q) is true
Solution:
P:
\(\begin{array}{l}A=\begin{bmatrix} 1 &1 \\ 0 & 1 \end{bmatrix}\end{array} \)
β I2
And A β 0 and A = 1
(P) is false.
Q:
\(\begin{array}{l}A=\begin{bmatrix} 1 &1 \\ 0 & 1 \end{bmatrix}=1\end{array} \)
then Tr(A) = 2
(Q) is true.
Hence, option (d) is the answer.
Question 9:
Let
\(\begin{array}{l}A+2B=\begin{bmatrix} 1&2 &0 \\ 6&-3 &3 \\ -5&3 &1 \end{bmatrix}\end{array} \)
and \(\begin{array}{l}2A-B=\begin{bmatrix} 2&-1 &5 \\ 2&-1 &6 \\ 0&1 &2 \end{bmatrix}\end{array} \)
. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) β Tr(B) has a value equal to
(a) 0
(b) 1
(c) 3
(d) 2
Solution:
Given that
\(\begin{array}{l}A+2B=\begin{bmatrix} 1&2 &0 \\ 6&-3 &3 \\ -5&3 &1 \end{bmatrix}\end{array} \)
tr(A + 2B) β‘ tr(A) + 2 tr(B) = β1 β¦..(1)
\(\begin{array}{l}2A-B=\begin{bmatrix} 2&-1 &5 \\ 2&-1 &6 \\ 0&1 &2 \end{bmatrix}\end{array} \)
And tr (2A – B) β‘ 2tr (A) – tr (B) = 3 β¦..(2)
On solving (1) and (2), we get
tr(A) = 1
tr(B) = -1
tr(A) – tr(B) = 1 + 1
= 2
Hence, option (d) is the answer.
Question 10:
If element of matrix A = [aij](3Γ3) where
\(\begin{array}{l}a_{ij} = \left\{\begin{matrix} (-1)^{j-i} &i<j \\ 2& i=j\\ (-1)^{i+j}& i>j \end{matrix}\right.\end{array} \)
, then the value of |3 adj(2A-1)| is:
(a) 72
(b) 36
(c) 108
(d) 48
Solution:
\(\begin{array}{l}A=\begin{bmatrix} 2 & -1 & 1\\ -1& 2& -1\\ 1& -1& 2 \end{bmatrix}\end{array} \)
|A| = 2(4-1)+1(-2+1)+1(1-2)
= 2(3)+1(-1)+1(-1)
= 4
|3 adj(2A-1)| = 33|adj(2A-1)|
= 33Γ|2A-1|2
= 33Γ26Γ|Aβ1|2
= 33Γ26Γ1/|A|2
= 27 Γ 64/16
= 108
Hence, option (c) is the answer.
Question 11:
Let Ξ± be a root of the equation x2 + x+ 1= 0 and the matrix
\(\begin{array}{l}A =\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \alpha & \alpha ^{2}\\ 1& \alpha ^{2} & \alpha ^{4} \end{bmatrix}\end{array} \)
then the matrix A31 is equal to
(a) A
(b) A2
(c) A3
(d) I3
Solution:
Given x2 + x+ 1 = 0
The roots of equation x2 + x+ 1 = 0 are complex cube roots of unity.
= Ο or Ο2
\(\begin{array}{l}A= \frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \alpha & \alpha ^{2}\\ 1& \alpha ^{2} & \alpha ^{4} \end{bmatrix}\end{array} \)
Substituting Ξ± = Ο, we get;
\(\begin{array}{l}=\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\end{array} \)
\(\begin{array}{l}A^2=\frac{1}{{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\end{array} \)
\(\begin{array}{l}A^{2}=\frac{1}{3}\begin{bmatrix} 3 & 0 & 0\\ 0 & 0 & 3\\ 0 & 3 & 0 \end{bmatrix}\end{array} \)
\(\begin{array}{l}A^{2}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\end{array} \)
\(\begin{array}{l}A^{4}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\end{array} \)
\(\begin{array}{l}A^{4}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}= I\end{array} \)
A4 = I
A28 = I
Therefore, we get
A31 = A28 A3
= IA3
= A3
Hence, option (c) is the answer.
Question 12:
If
\(\begin{array}{l}A = \begin{bmatrix} 2 & 2\\ 9 & 4 \end{bmatrix}\end{array} \)
and \(\begin{array}{l}I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\end{array} \)
, then 10A-1 is equal to:
(a) 6I β A
(b) A β 6I
(c) 4I β A
(d) A β 4I
Solution:
Given that
\(\begin{array}{l}A = \begin{bmatrix} 2 & 2\\ 9 & 4 \end{bmatrix}\end{array} \)
Then,
\(\begin{array}{l}A^{-1} = -\frac{1}{10}\begin{bmatrix} 4 & -2\\ -9 & 2 \end{bmatrix}\end{array} \)
\(\begin{array}{l}10A^{-1} = \begin{bmatrix} -4 & 2\\ 9 & -2 \end{bmatrix}\end{array} \)
10A-1= A β 6I
Hence, option (b) is the answer.
Question 13:
If the matrices
\(\begin{array}{l}A =\begin{bmatrix} 1 & 1 &2 \\ 1& 3&4 \\ 1 & -1&3 \end{bmatrix}\end{array} \)
, B = adj A and C = 3A, then \(\begin{array}{l}\frac{\left | adj \: B \right |}{\left | C \right |}\end{array} \)
is equal to
(a) 16
(b) 2
(c) 8
(d) 72
Solution:
\(\begin{array}{l}A =\begin{bmatrix} 1 & 1 &2 \\ 1& 3&4 \\ 1 & -1&3 \end{bmatrix}\end{array} \)
\(\begin{array}{l}\left | A \right |= \begin{vmatrix} 1 & 1 & 2\\ 1& 3 & 4\\ 1& -1 & 3 \end{vmatrix}\end{array} \)
= 13 + 1 – 8
= 6
B = adj(A)
Ηadj BΗ = Ηadj (adj A)Η = ΗAΗ4 = 64
ΗCΗ = Η3AΗ = 33ΗAΗ = 33 Γ 6
\(\begin{array}{l}\frac{\left | adj \: B \right |}{\left | C \right |}\end{array} \)
= 64/(33Γ6)
= 8
Hence, option (c) is the answer.
Related Videos
Matrices and Determinants – Important Topics
Matrices and Determinants – Important Questions
Comments