The JEE Main Maths Matrices previous year questions with solutions are given here. JEE aspirants are recommended to solve the previous year JEE Main Matrices questions with solutions. We have provided the solutions of the JEE Main Matrices previous year questions in a detailed method. Students can easily download the JEE Main Matrices previous years’ questions with solutions PDF for free.

Question 1:

Let M be any 3 Γ— 3 matrix with entries from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements of MTM is seven, is

Solution:

Let

\(\begin{array}{l}M = \begin{bmatrix}a & b & c \\d & e & f \\ g& h & i \\\end{bmatrix}\end{array} \)

Then

\(\begin{array}{l}M^{T} = \begin{bmatrix}a & d & g \\b & e & h \\c& f & i \\\end{bmatrix}\end{array} \)

Sum of the diagonal elements of MTM = a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 = 7

Case I∢ Seven (1’s) and two (0’s)

9C2 = 36

Case II∢ One (2) and three (1’s) and five (0’s)

9!/5!3! = 504

The sum of diagonal elements = 36 + 504 = 540.

Question 2:

Let A and B be 3 Γ— 3 real matrices such that A is a symmetric matrix and B is a skew-symmetric matrix. Then the system of linear equations (A2B2 βˆ’ B2A2)X = O, where X is a 3Γ—1 column matrix of unknown variables, and O is a 3Γ—1 null matrix, has:

(a) a unique solution

(b) exactly two solutions

(c) infinitely many solutions

(d) no solution

Solution:

Since A is a symmetric matrix, AT = A.

B is a skew-symmetric matrix, BT = -B.

Let A2B2 βˆ’ B2A2= P

PT = (A2B2 – B2A2)T

= (A2B2)T – (B2A2)T

= (B2)T (A2)T– (A2)T (B2)T

= B2A2 – A2B2

So P is a skew-symmetric matrix.

\(\begin{array}{l}\begin{bmatrix} 0 & a & b\\ -a & 0 &c \\ -b &-c & 0 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\end{array} \)

So ay + bz = 0 …(1)

–ax + cz = 0 …(2)

–bx – cy = 0 …(3)

From equation (1), (2), (3)

Ξ” = 0 and Ξ”1 = Ξ”2= Ξ”3 = 0

Therefore, the system of equations has an infinite number of solutions.

Hence, option (c) is the answer.

Question 3:

If for the matrix,

\(\begin{array}{l}A = \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix},\end{array} \)
AAT = I2, then the value of Ξ±4 + Ξ²4 is:

(a) 1

(b) 3

(c) 2

(d) 4

Solution:

AAT = I2

\(\begin{array}{l}A A^{T}= \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix}\begin{bmatrix} 1 & \alpha \\ -\alpha & \beta \end{bmatrix} = \begin{bmatrix}1 & 0 \\0 & 1\\\end{bmatrix}\end{array} \)

1 + Ξ±2 = 1

Ξ±2 = 0

Ξ±2 + Ξ²2 = 1

Ξ²2 = 1

So, Ξ±4 = 0 and Ξ²4 = 1

Hence, Ξ±4 + Ξ²4 = 1

Hence, option (a) is the answer.

Question 4:

Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is

(a) 6

(b) 1

(c) 4

(d) 12

Solution:

Let

\(\begin{array}{l}A = \begin{bmatrix} a &b \\ b&c \end{bmatrix}\\\end{array} \)

\(\begin{array}{l}A^{2}=\begin{bmatrix} a &b \\ b&c \end{bmatrix}\begin{bmatrix} a &b \\ b&c \end{bmatrix}=\begin{bmatrix} a^2+b^2 &ab+bc \\ ab+bc&c^2+b^2 \end{bmatrix}\\\end{array} \)

a2 + 2b2 + c2 = 1

a = 1, b = 0, c = 0

a = 0, b = 0, c = 1

a = –1, b = 0, c = 0

c = –1, b = 0, a = 0

The possible number of matrices = 4.

Hence, option (c) is the answer.

Question 5:

The value of

\(\begin{array}{l}\begin{vmatrix} (a+1)(a+2)& a+2 & 1\\ (a+2)(a+3)& a+3 & 1\\ (a+3)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)
is

(a) -2

(b) (a + 1) (a + 2) (a + 3)

(c) 0

(d) (a + 2) (a + 3) (a + 4)

Solution:

Given matrix is

\(\begin{array}{l}\begin{vmatrix} (a+1)(a+2)& a+2 & 1\\ (a+2)(a+3)& a+3 & 1\\ (a+3)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)

C1 β†’ C1 – C2

βˆ† =

\(\begin{array}{l}\begin{vmatrix} (a+2)a& a+2 & 1\\ (a+1)(a+3)& a+3 & 1\\ (a+2)(a+4)& a+4 & 1 \end{vmatrix}\end{array} \)

C2 β†’ C2 – C3

\(\begin{array}{l}\Delta =\begin{bmatrix} (a+2)a& a+1 & 1\\ (a+1)(a+3)& a+2 & 1\\ (a+2)(a+4)& a+3 & 1 \end{bmatrix}\end{array} \)

R2 β†’ R2 – R1 and R3 β†’ R3 – R1

\(\begin{array}{l}\Delta =\begin{bmatrix} a^{2}+2a& a+1 & 1\\ 2a+3& 1 & 0\\ 4a+8& 2 & 0 \end{bmatrix}\end{array} \)

= 6 – 8

= -2

Hence, option (a) is the answer.

Question 6:

The total number of 3 Γ— 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to

Solution:

\(\begin{array}{l}AA^T=\begin{bmatrix} x &y &z \\ a&b &c \\ d &e &f \end{bmatrix}\begin{bmatrix} x&a &d \\ y&b &e \\ z&c &f \end{bmatrix}\\ =\begin{bmatrix} x^2+y^2+z^2 &ax+by+cz &dx+ey+fz \\ ax+by+cz& a^2+b^2+c^2 &ad+be+cf \\ dx+ey+fz &ad+be+cf & d^2+e^2+f^2 \end{bmatrix}\end{array} \)

Tr (AAT) = x2 + y2 + z2 + a2 + b2 + c2 + d2 + e2 + f2 = 9

all⇒1 = 1

one 3, rest = 0 β‡’ (9! / 8!) = 9

two 2 , one 1 and rest 0 β‡’ (9!) / (2! 6!) = 63 Γ— 4 = 252

one 2 , five 1, rest 0 β‡’ (9!) / (5! 3!) = 63 Γ— 8 = 504

Total number of 3 Γ— 3 matrices = 766

Question 7:

Let

\(\begin{array}{l}A=\begin{bmatrix} a_{1}\\ a_{2} \end{bmatrix}\end{array} \)
and
\(\begin{array}{l}B=\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}\end{array} \)
be two 2 Γ— 1 matrices with real entries such that A = XB, where
\(\begin{array}{l}X = \frac{1}{\sqrt3}\begin{bmatrix} 1 &-1 \\ 1&k \end{bmatrix}\end{array} \)
, and k ∈ R. If (a12 + a22) = (2 / 3) (b12 + b22) and (k2 + 1) b22 β‰  – 2b1b2, then the value of k is

Solution:

Given that A = XB

\(\begin{array}{l}\frac{1}{\sqrt3}\begin{bmatrix} b_{1}-b_{2}\\ b_{1}+kb_{2} \end{bmatrix}=\begin{bmatrix} a_{1}\\ a_{2} \end{bmatrix}\end{array} \)

b1 – b2 = √3a1

3a12 = b12 + b22 – 2b1b2 ..(i)

b1 + kb2 = √3a2

3a22 = b12 + k2b22 + 2kb1b2 ..(ii)

Adding both equations, 3 (a12 + a22) = 2b12 + (k2 + 1) b22 + 2b1b2 (k – 1)

(k2 – 1) b22 + 2b1b2 (k – 1) = 0

(k – 1) [(k + 1) b22 + 2b1b2] = 0

k = 1

Question 8:

Let A be a 2 Γ— 2 real matrix with entries from {0,1} and A β‰  0. Consider the following two statements:

(P) If A β‰ I2 , then |A| = -1

(Q) If |A| =1 , then tr(A) = 2,

where I2 denotes 2 Γ— 2 identity matrix, and tr(A) denotes the sum of the diagonal entries of A. Then:

(a) Both (P) and (Q) are false

(b) (P) is true, and (Q) is false

(c) Both (P) and (Q) are true

(d) (P) is false, and (Q) is true

Solution:

P:

\(\begin{array}{l}A=\begin{bmatrix} 1 &1 \\ 0 & 1 \end{bmatrix}\end{array} \)
β‰ I2

And A β‰ 0 and A = 1

(P) is false.

Q:

\(\begin{array}{l}A=\begin{bmatrix} 1 &1 \\ 0 & 1 \end{bmatrix}=1\end{array} \)

then Tr(A) = 2

(Q) is true.

Hence, option (d) is the answer.

Question 9:

Let

\(\begin{array}{l}A+2B=\begin{bmatrix} 1&2 &0 \\ 6&-3 &3 \\ -5&3 &1 \end{bmatrix}\end{array} \)
and
\(\begin{array}{l}2A-B=\begin{bmatrix} 2&-1 &5 \\ 2&-1 &6 \\ 0&1 &2 \end{bmatrix}\end{array} \)
. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) – Tr(B) has a value equal to

(a) 0

(b) 1

(c) 3

(d) 2

Solution:

Given that

\(\begin{array}{l}A+2B=\begin{bmatrix} 1&2 &0 \\ 6&-3 &3 \\ -5&3 &1 \end{bmatrix}\end{array} \)

tr(A + 2B) ≑ tr(A) + 2 tr(B) = –1 …..(1)

\(\begin{array}{l}2A-B=\begin{bmatrix} 2&-1 &5 \\ 2&-1 &6 \\ 0&1 &2 \end{bmatrix}\end{array} \)

And tr (2A – B) ≑ 2tr (A) – tr (B) = 3 …..(2)

On solving (1) and (2), we get

tr(A) = 1

tr(B) = -1

tr(A) – tr(B) = 1 + 1

= 2

Hence, option (d) is the answer.

Question 10:

If element of matrix A = [aij](3Γ—3) where

\(\begin{array}{l}a_{ij} = \left\{\begin{matrix} (-1)^{j-i} &i<j \\ 2& i=j\\ (-1)^{i+j}& i>j \end{matrix}\right.\end{array} \)
, then the value of |3 adj(2A-1)| is:

(a) 72

(b) 36

(c) 108

(d) 48

Solution:

\(\begin{array}{l}A=\begin{bmatrix} 2 & -1 & 1\\ -1& 2& -1\\ 1& -1& 2 \end{bmatrix}\end{array} \)

|A| = 2(4-1)+1(-2+1)+1(1-2)

= 2(3)+1(-1)+1(-1)

= 4

|3 adj(2A-1)| = 33|adj(2A-1)|

= 33Γ—|2A-1|2

= 33Γ—26Γ—|Aβˆ’1|2

= 33Γ—26Γ—1/|A|2

= 27 Γ— 64/16

= 108

Hence, option (c) is the answer.

Question 11:

Let Ξ± be a root of the equation x2 + x+ 1= 0 and the matrix

\(\begin{array}{l}A =\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \alpha & \alpha ^{2}\\ 1& \alpha ^{2} & \alpha ^{4} \end{bmatrix}\end{array} \)
then the matrix A31 is equal to

(a) A

(b) A2

(c) A3

(d) I3

Solution:

Given x2 + x+ 1 = 0

The roots of equation x2 + x+ 1 = 0 are complex cube roots of unity.

= Ο‰ or Ο‰2

\(\begin{array}{l}A= \frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \alpha & \alpha ^{2}\\ 1& \alpha ^{2} & \alpha ^{4} \end{bmatrix}\end{array} \)

Substituting Ξ± = Ο‰, we get;

\(\begin{array}{l}=\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\end{array} \)

\(\begin{array}{l}A^2=\frac{1}{{3}}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\ 1& \omega & \omega ^{2}\\ 1& \omega ^{2} & \omega ^{4} \end{bmatrix}\end{array} \)

\(\begin{array}{l}A^{2}=\frac{1}{3}\begin{bmatrix} 3 & 0 & 0\\ 0 & 0 & 3\\ 0 & 3 & 0 \end{bmatrix}\end{array} \)

\(\begin{array}{l}A^{2}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\end{array} \)

\(\begin{array}{l}A^{4}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}\end{array} \)

\(\begin{array}{l}A^{4}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}= I\end{array} \)

A4 = I

A28 = I

Therefore, we get

A31 = A28 A3

= IA3

= A3

Hence, option (c) is the answer.

Question 12:

If

\(\begin{array}{l}A = \begin{bmatrix} 2 & 2\\ 9 & 4 \end{bmatrix}\end{array} \)
and
\(\begin{array}{l}I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\end{array} \)
, then 10A-1 is equal to:

(a) 6I βˆ’ A

(b) A βˆ’ 6I

(c) 4I βˆ’ A

(d) A βˆ’ 4I

Solution:

Given that

\(\begin{array}{l}A = \begin{bmatrix} 2 & 2\\ 9 & 4 \end{bmatrix}\end{array} \)

Then,

\(\begin{array}{l}A^{-1} = -\frac{1}{10}\begin{bmatrix} 4 & -2\\ -9 & 2 \end{bmatrix}\end{array} \)

\(\begin{array}{l}10A^{-1} = \begin{bmatrix} -4 & 2\\ 9 & -2 \end{bmatrix}\end{array} \)

10A-1= A βˆ’ 6I

Hence, option (b) is the answer.

Question 13:

If the matrices

\(\begin{array}{l}A =\begin{bmatrix} 1 & 1 &2 \\ 1& 3&4 \\ 1 & -1&3 \end{bmatrix}\end{array} \)
, B = adj A and C = 3A, then
\(\begin{array}{l}\frac{\left | adj \: B \right |}{\left | C \right |}\end{array} \)
is equal to

(a) 16

(b) 2

(c) 8

(d) 72

Solution:

\(\begin{array}{l}A =\begin{bmatrix} 1 & 1 &2 \\ 1& 3&4 \\ 1 & -1&3 \end{bmatrix}\end{array} \)

\(\begin{array}{l}\left | A \right |= \begin{vmatrix} 1 & 1 & 2\\ 1& 3 & 4\\ 1& -1 & 3 \end{vmatrix}\end{array} \)

= 13 + 1 – 8

= 6

B = adj(A)

Η€adj BΗ€ = Η€adj (adj A)Η€ = Η€AΗ€4 = 64

Η€CΗ€ = Η€3AΗ€ = 33Η€AΗ€ = 33 Γ— 6

\(\begin{array}{l}\frac{\left | adj \: B \right |}{\left | C \right |}\end{array} \)
= 64/(33Γ—6)

= 8

Hence, option (c) is the answer.

Related Videos

Matrices and Determinants – Important Topics

Matrices and Determinants – Important Questions

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*