JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

Limits Solved Examples

What is a Limit in calculus? A limit can be explained as the value which a function tends to approach as the input value (also known as index) gains some value. It is the converging of different values at a point. Boundedness of a function is shown by limits. In this article, we come across solved examples of limits.

Consider f(x) to be a function. In a function, if x takes a definite value say b, x → b is called limit. Here ‘b’ is a value which is pre-assigned. It is represented as limx→bf(x).

The tendency of f(x) at x=a towards the left is called left limit and denoted by limx→a and towards the right is called right limit denoted by limx→a+. Limit of a function at a point is the common value of the right and left hand limits, if they coincide.

The graphical representation of limits is as follows:

Graphical Representation of Limits

Algebra of Limits

Suppose limx→a a(x) = r and limx→a b(x) = t then the following can be defined.

  • limx→a [r(x) + t(x)] = limx→a r(x) + limx→a t(x).
  • limx→a [r(x) − t(x)] = limx→a r(x) − limx→a t(x).
  • limx→a [r(x) × t(x)] = [limx→a r(x)] × [limx→a t(x)].
  • limx→a [r(x) ÷ t(x)] = [limx→a r(x)] ÷ [limx→a t(x)].
  • limx→a [α.r(x))] = α. limx→a r(x).

Some Standard Limits

The following are some of the standard limits.

\(\begin{array}{l}1] \ \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin x}}{x}} \right] = 1\\
2] \ \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\tan x}}{x}} \right] = 1\\
3] \ \mathop {\lim }\limits_{x \to \infty } {{\left( {1 + \frac{1}{x}} \right)}^x} = e\\
4] \ \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\\
5] \ \mathop {\lim }\limits_{x \to 0} \frac{{{{\log }_a}\left( {1 + x} \right)}}{x} = \frac{1}{{\ln \,a}}\\
6] \ \mathop {\lim }\limits_{x \to 0} \frac{{{a^x} – 1}}{x} = \ln \,\,a\\
7] \ \mathop {\lim }\limits_{x \to 1} \frac{{{x^m} – 1}}{{x – 1}} = m\\
8] \ \mathop {\lim }\limits_{x \to a} \frac{{{x^m} – {a^m}}}{{x – a}} = m\,\,{a^{m – 1}}\\
9] \ \mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^{ – 1}}x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\tan }^{ – 1}}x}}{x} = 1\\\end{array} \)

Related articles

Limits, Continuity and Differentiability

Limits of Functions

Solved Examples on Limits for Practice

Below are illustrated some of the questions based on limits asked in JEE previous exams.

Example 1: Find limx→∞ sinx/x.

Solution:

Let x = 1/y or y = 1/x, so that x → ∞ ⇒ y → 0

∴ limx→∞ (sin x / x) = limy→0 (y . sin (1 / y))

=limy→0  y . limy→0 sin (1 / y)

= 0

Example 2: If f(a) = 2, f′(a) = 1, g(a) = −1; g′(a) = 2, then find

Solved Practice Examples on Limits

Solution:

Consider Practice Examples on Limits

Examples on Limits

Solved Practice Examples on Limits for JEE

Solved Practice Examples on Limits for IIT JEE

Example 3: Evaluate

Solve Limit Problems

Solution:

Limit Problems Solution

Example 4: Find the limit limn→∞ [1/n2 + 2/n2 + … + n/n2]

Solution:

limn→∞ [1/n2 + 2/n2 + … + n/n2]

= limn→∞ [1+2+3+…. +n]/ n2

= limn→∞ [(n / 2) * ( n+1)] / n2

= ½ limn→∞ ( n+1) / n

= ½ limn→∞ (1 + 1/n)

= -½

Example 5: Find limx→0 sin (π cos2x) / x2

Solution:

Problems on Limits in Calculus

Limits Problems in Calculus

= π (-1).1.(-1) = π

Example 6: let f: R→R be such that f (1) = 3 and f’(1) = 6. Then find the value of

lim x→0 [f (1+x) / f (1)]1/x.

Solution:

Let y = [f (1 + x) / f (1)]1/x

So, log y = 1/x [log f (1 + x) – log f (1)]

So, limx→0 log y = limx→0 [1 / f (1 + x) . f’(1 + x)]

= f’(1) / f(1)

= 6/3

log (limx→0 y) = 2

limx→0 y = e2

Example 7: If f (x) = [2/x ] − 3, g (x) = x − [3 / x] + 4 and h (x) = −[2 (2x + 1)] / [x2 + x − 12], then what is the value of limx→3 [f (x) + g (x) + h (x)]?

Solution:

We have f (x) + g (x) + h (x) = [x2 − 4x + 17− 4x − 2] / [x2 + x − 12]

= [x2 − 8x + 15] / [x2 + x − 12]

= [(x − 3) (x − 5)] / [(x − 3) (x + 4)]

∴limx→3 [f (x) + g (x) + h (x)] = limx→3 (x − 3) (x − 5) / (x − 3) (x + 4)

= −2/7

Example 8: 

\(\begin{array}{l}\lim _{x\to 0}\left(\frac{\sqrt{1-cos2x}}{\sqrt{2}x}\right)\end{array} \)

Solution: 

\(\begin{array}{l}\mathrm{If\:}\lim _{x\to a-}f\left(x\right)\ne \lim _{x\to a+}f\left(x\right)\mathrm{\:then\:the\:limit\:does\:not\:exist}\end{array} \)

\(\begin{array}{l}\lim _{x\to \:0+}\left(\frac{\sqrt{1-\cos \left(2x\right)}}{\sqrt{2}x}\right)\\\lim _{x\to a}\left[c\cdot f\left(x\right)\right]=c\cdot \lim _{x\to a}f\left(x\right)\\=\frac{1}{\sqrt{2}}\cdot \lim _{x\to \:0+}\left(\frac{\sqrt{1-\cos \left(2x\right)}}{x}\right)\\\mathrm{Apply\:L’Hospital’s\:Rule}\\=\frac{1}{\sqrt{2}}\cdot \lim _{x\to \:0+}\left(\frac{\frac{\sin \left(2x\right)}{\sqrt{1-\cos \left(2x\right)}}}{1}\right)\\=\frac{1}{\sqrt{2}}\cdot \lim _{x\to \:0+}\left(\frac{\sin \left(2x\right)}{\sqrt{1-\cos \left(2x\right)}}\right)\\\mathrm{Apply\:L’Hospital’s\:Rule}\\=\frac{1}{\sqrt{2}}\cdot \lim _{x\to \:0+}\left(\frac{\cos \left(2x\right)\cdot \:2}{\frac{\sin \left(2x\right)}{\sqrt{1-\cos \left(2x\right)}}}\right)\\\mathrm{Simplify\:}\frac{\cos \left(2x\right)\cdot \:2}{\frac{\sin \left(2x\right)}{\sqrt{1-\cos \left(2x\right)}}}\\=\frac{1}{\sqrt{2}}\cdot \lim _{x\to \:0+}\left(2\cot \left(2x\right)\sqrt{1-\cos \left(2x\right)}\right)\\=\frac{1}{\sqrt{2}}\cdot \:2\cdot \lim _{x\to \:0+}\left(\cot \left(2x\right)\sqrt{1-\cos \left(2x\right)}\right)\\\mathrm{Multiply\:by\:the\:conjugate\:of}\:1-\cos \left(2x\right)\\=\frac{\left(1-\cos \left(2x\right)\right)\left(1+\cos \left(2x\right)\right)}{1+\cos \left(2x\right)}\\\mathrm{Expand}\:\left(1-\cos \left(2x\right)\right)\left(1+\cos \left(2x\right)\right)\\=\frac{\sin ^2\left(2x\right)}{1+\cos \left(2x\right)}\\=\frac{1}{\sqrt{2}}\cdot \:2\cdot \lim _{x\to \:0+}\left(\cot \left(2x\right)\sqrt{\frac{\sin ^2\left(2x\right)}{1+\cos \left(2x\right)}}\right)\\=\frac{1}{\sqrt{2}}\cdot \:2\cdot \lim _{x\to \:0+}\left(\cos \left(2x\right)\sqrt{\frac{1}{\cos \left(2x\right)+1}}\right)\\\mathrm{Plug\:in\:the\:value}\:x=0\\=\frac{1}{\sqrt{2}}\cdot \:2\cos \left(2\cdot \:0\right)\sqrt{\frac{1}{\cos \left(2\cdot \:0\right)+1}}\\\mathrm{Simplify\:} \frac{1}{\sqrt{2}}\cdot \:2\cos \left(2\cdot \:0\right)\sqrt{\frac{1}{\cos \left(2\cdot \:0\right)+1}}\\=1\\\mathrm{Similarly\:} \lim _{x\to \:0-}\left(\frac{\sqrt{1-\cos \left(2x\right)}}{\sqrt{2}x}\right)=-1\\=\mathrm{diverges}\end{array} \)

Related Video

Limits, Continuity and Differentiability – Part 1

Limits, Continuity and Differentiability

Limits, Continuity and Differentiability – Part 2

Limit Continuity and Differentiability

Limits, Continuity and Differentiability – Important Topics

Limit Continuity and Differentiability - Important Topics

Limits, Continuity and Differentiability – Important Questions

Limit Continuity and Differentiability - Important Questions

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*