A quadratic inequality is simply a type of equation which does not have an equal sign and includes the highest degree two. The wavy curve method is a method used to solve quadratic inequalities. Solving quadratic inequalities is the same as solving quadratic equations. We just have to keep in mind some tips and tricks while attempting more complicated inequalities. We will learn shortcuts to solve different quadratic inequalities here.

Download Complete Chapter Notes of Inequalities (Wavy Curve Method)
Download Now

The wavy curve method is explained below.

Wavy Curve Method or Methods of Intervals

The wavy curve method or the methods of intervals is helpful in solving inequalities of the form:

F(x)G(x)>0,F(x)G(x)โ‰ฅ0,F(x)G(x)<0,F(x)G(x)โ‰ค0

Steps for Solving Quadratic Inequalities

Step 1: Consider the given polynomial equation and find all the roots of the given polynomial equation F (x) and G (x).

i.e.

H(x)=F(x)G(x)=(xโˆ’ฮฑ1)(xโˆ’ฮฑ2)(xโˆ’ฮฑ3)......(xโˆ’ฮฑn)(xโˆ’ฮฒ1)(xโˆ’ฮฒ2)(xโˆ’ฮฒ3).....(xโˆ’ฮฒm)

Where ฮฑ1, ฮฑ2, ฮฑ3,โ€ฆ, ฮฑn are roots of F (x) and ฮฒ1, ฮฒ2, ฮฒ3,โ€ฆ., ฮฒm are roots of polynomial equation G (x).

Note: H (x) = 0 for x = ฮฑ1, ฮฑ2, ฮฑ3,โ€ฆ, ฮฑn and H (x) is not defined for x = ฮฒ1, ฮฒ2, ฮฒ3,โ€ฆ., ฮฒn

Step 2: Compare the roots of both F (x) and G (x) and arrange all the roots of F (x) and G (x) in increasing order, say a1, a2, a3,โ€ฆ., am+n.

Step 3: Plot them on the number line. Now, draw a wavy curve starting from the right of am + n along the number line that alternatively changes its position at these points.

Quadratic Inequalities

Note: H (x) is a positive function for all the intervals in which the curve lies above the number line, and H (x) is a negative function for all the intervals in which the curve lies below the number line.

Note: All the zeros of the given polynomial equation H (x) must be marked with coloured black circles on the number line, whereas all points of discontinuities of the function H (x) must be marked on the number line with white circles.

Shortcut Tips for Solving Quadratic Inequalities

If ax2 + bx + c > 0 and (a โ‰  0):

Case 1: (i) If D (b2 โ€“ 4ac) > 0, i.e., the quadratic equation f (x) has two different roots and a < b.

If a > 0, then

xโˆˆ(โˆ’โˆž,ฮฑ)โˆช(ฮท,โˆž)

And, if a < 0, then, x โˆˆ (ฮฑ, ฮฒ)

Case 2: If D (b2 โ€“ 4ac) = 0, i.e., the quadratic equation f (x) has equal roots, i.e., a = b.

If a > 0, then,

xโˆˆ(โˆ’โˆž,ฮฑ)โˆช(ฮฑ,โˆž)

And, if a < 0, then x โˆˆ ร˜

Case 3: If D (b2 โ€“ 4ac) < 0, i.e., the quadratic equation has imaginary roots.

If a > 0, then

xโˆˆR

And, if a < 0 then, x โˆˆ ร˜

In general, if (x โ€“ a) (x โ€“ b) โ‰ฅ 0, then a โ‰ค x โ‰ค b,

(x โ€“ a) (x โ€“ b) โ‰ค 0 and a < b, then a โ‰ค x or x โ‰ฅ b.

Hence, the quadratic inequalities can be quickly solved using the method of intervals.

Solution of the Inequality

(a) Write all the terms present in the inequality as their linear factors in standard form, i.e., x + a.

(b) If the inequality contains quadratic expression, f(x) = ax2 + bx + c, then first check the discriminant (D = b2 โ€“ 4ac).

(i) If D > 0, then the expression can be written as f(x) = a (x โ€“ ฮฑ)(x โ€“ ฮฒ), where ฮฑ and ฮฒ are given by

ฮฑ,ฮฒ=โˆ’bยฑb2โˆ’4ac2a

(ii) If D = 0, then the expression can be written as

f(x)=a(xโˆ’ฮฑ)2,whereฮฑ=โˆ’b2a.

(iii) If D > 0 & if

  • A > 0, then f(x) > 0 โˆ€ x โˆˆ R, and the expression will be cross multiplied, and the sign of the inequality will not change.
  • A < 0, then f(x) < 0 โˆ€ x โˆˆ R, and the expression will be cross multiplied, and the sign of the inequality will change.
  • If the expression (say โ€˜fโ€™) is cancelled from the same side of the inequality, then cancel it and write f โ‰  0. For example,

(i)

(xโˆ’1)(xโˆ’3)(xโˆ’2)(xโˆ’5)>1โ‡’(xโˆ’3)(xโˆ’5)>1iffxโˆ’2โ‰ 0

(ii)

(xโˆ’5)2(xโˆ’8)(xโˆ’5)โ‰ฅ0โ‡’(xโˆ’5)(xโˆ’8)โ‰ฅ0iffxโˆ’5โ‰ 0

Types of Inequalities

Type I: Inequalities involving non-repeating linear factors

1st condition

(xโˆ’1)>0โ‡’x>1(xโˆ’2)>0โ‡’x>2}xโ‰ฅ2
.

2nd condition

xโˆ’1<0โ‡’x<1xโˆ’2<0โ‡’x>2}xโ‰ค1
โˆด,xฮต(โˆ’โˆž,1]โˆช[2,โˆž)

Illustration

(xโ€“3)(x+1)(xโˆ’127)<0,
find range of x.

Sol:

Comparing all brackets separately with 0, we can find the range of values for x.

x<โˆ’1and127<x<3;โˆดxฮต(โˆ’โˆž,โˆ’1)โˆช(127,3)

Type II: Inequalities involving repeating linear factors

(xโˆ’1)2(x+2)3(xโˆ’3)โ‰ค0
โ‡’(x+1)2(x+2)2(x+2)(xโˆ’3)โ‰ค0
โ‡’(x+2)(xโˆ’3)โ‰ค0;xฮต[โˆ’2,3]

Type III: Inequalities expressed in rational form

Illustration:

(xโˆ’1)(x+2)(x+3)(xโˆ’4)โ‰ฅ0

Sol: If

(x+a)(x+b)(x+c)(xโˆ’d)โ‰ฅ0then(x+c)(x+d)โ‰ 0,and(x+a)(x+b)=0

Hence, x โ‰  โ€“3, 4 and x = 1, โ€“2;     

xฮต(โˆ’โˆž,โˆ’3)โˆช[โˆ’2,1]โˆช(4,โˆž)

Illustration:

x2(x+1)(xโˆ’3)3<0

Sol: Similar to the illustration above.

x+1xโˆ’3<0,xโ‰ 3,โˆ’1,0;xโˆˆ(โˆ’1,0)โˆช(0,3)

Illustration:

x2โˆ’1x2โˆ’7x+12โ‰ฅ1

Sol: First, reduce the given inequalities in rational form and then solve it in the manner similar to the illustration above.

x2โˆ’1(xโˆ’4)(xโˆ’3)โ‰ฅ1
โˆด(x+1)(xโˆ’1)(xโˆ’4)(xโˆ’3)โ‰ฅ1โ‡’x2โˆ’1x2โˆ’7x+12โˆ’1โ‰ฅ0
โˆดx2โˆ’1โˆ’x2+7xโˆ’12(xโˆ’4)(xโˆ’3)โ‰ฅ0โˆด7xโˆ’13(xโˆ’4)(xโˆ’3)โ‰ฅ0
โˆดxโ‰ 3,4;xฮต[137,3)โˆช(4,โˆž)

Type IV: Double inequality

Illustration 

1<3x2โˆ’7x+8x2+1โ‰ค2

Sol: Here, 3x2 โ€“ 7x + 8 > x2 + 1 therefore if D < 0 & if a > 0, then f(x) > 0 and always positive for all real x.

3x2 โ€“ 7x + 8 > x2 + 1 or 2x2 โ€“ 7x + 7 > 0

D = b2 โ€“ 4ac = 49 โ€“ 56 = โ€“7

โˆดD<0&a>0โˆดalwayspositiveforallrealx

3x2 โ€“ 7x + 8 < 2x2 + 2 or x2 โ€“ 7x + 6 < 0 รž

(xโˆ’1)(xโˆ’6)โ‰ค0
xโˆˆ[1,6];xฮต[1,6]โˆฉR

Type V: Inequalities involving biquadrate expression

Illustration 

(x2+3x+1)(x2+3xโˆ’3)โ‰ฅ5

Sol: Using x2 + 3x = y, we can solve this problem

Let x2 + 3x = y                                    

โˆด(y+1)(yโˆ’3)โ‰ฅ5

y2 โ€“ 2y โ€“ 8 > 0                        

โˆด(yโˆ’4)(y+2)โ‰ฅ0
โˆด(x+4)(xโˆ’1)(x+2)(x+1)โ‰ฅ0โ‡’xโˆˆ(โˆ’โˆž,โˆ’4]โˆช[โˆ’2,โˆ’1]โˆช[1,โˆž)

Some Basic Properties of Inequality

Intervals

Given E(x) = (x โ€“ a)(x โ€“ b)(x โ€“ c)(x โ€“ d) > 0

To find the solution set of the above inequality, we have to check the intervals in which E(x) is greater/less than zero.

  • Closed interval: The set of all values of x, which lies between a and b and is also equal to a and b, is known as a closed interval, i.e., if a < x < b, then it is denoted by x ฯต [a, b].
  • Open-closed interval: The set of all values of x, which lies between a and b, equal to b, but not equal to a, is known as an open-closed interval, i.e., if a < x < b, then it is denoted by x ฯต (a, b).
  • Open-closed interval: The set of all values of x, which lies between a and b, equal to b, but not equal to a, is known as an open-closed interval, i.e., if a < x < b, then it is denoted by x ฯต (a, b].
  • Closed-open interval: The set of all values of x, which lies between a and b, equal to a but not equal to b, is called a closed-open interval, i.e., if a < x < b, then it is denoted by c ฯต [a, b).

Note:

(i)xโ‰ฅaโ‡’[a,โˆž)
(ii)x>aโ‡’[a,โˆž)
(iii)xโ‰คaโ‡’[โˆ’โˆž,a)
(iv)x<aโ‡’(โˆ’โˆž,a)

Properties

(a) In an inequality, any number can be added or subtracted from both sides of the inequality.

(b) Terms can be shifted from one side to the other side of the inequality. The sign of inequality does not change.

(c) If we multiply both sides of the inequality by a non-zero positive number, then the sign of inequality does not change.

But if we multiply both sides of the inequality by a non-zero negative number, then the sign of the inequality does get changed.

(d) In the inequality, if the sign of an expression is not known, then it cannot be cross-multiplied. Similarly, without

knowing the sign of an expression, a division is not possible.

(i)

xโˆ’2xโˆ’5>1โ‡’xโˆ’2>xโˆ’5
(Not valid because we donโ€™t know the sign of the expression)

(ii)

xโˆ’2(xโˆ’5)2>1โ‡’(xโˆ’2)>(xโˆ’5)2
(valid because (x โ€“ 5)2 is always positive)

Also, Practise:

JEE Previous Year Questions on Quadratic Equations 

Solved Examples

Example 1: Let

P(x)=(xโˆ’3)(x+2)(xโˆ’7)(x+1).
. Find the values of P (x) for which the given function is positive or negative.

Solution:

On arranging the roots of the given polynomial equation in increasing order [-2, -1, +3, +7] and plotting them on the number line,

Quadratic Equations IIT JEE

P (x) is positive, i.e., P (x) > 0, then

xโˆˆ(โˆ’1,3)
.

P (x) is negative, i.e., P (x) < 0, then

xโˆˆ(โˆ’2,โˆ’1)(3,7)
.

Example 2: Solve the given quadratic in equation:

f(x)=3x2+8โˆ’7xx2+1โ‰ค2

Solution:

Given,

3x2+8โˆ’7xx2+1โ‰ค2

i.e.

f(x)=3x2+8โˆ’7xx2+1โˆ’2โ‰ค0

Or,

3x2+8โˆ’7xโˆ’2โˆ’2x2x2+1โ‰ค0

Or,

x2+6โˆ’7xx2+1โ‰ค0

Or,

(xโˆ’6)(xโˆ’1)x2+1โ‰ค0

Neglecting x2 + 1 as x โˆˆ R.

Therefore, x โˆˆ [1, 6]

Example 3: Solve the given quadratic in equation:

โˆ’1xโˆ’2โ‰ฅ1x+2x+2

Solution:

From the given quadratic inequality, x canโ€™t be 2, โ€“ 2, 0.

The given quadratic inequality can be rewritten as:

1xโˆ’2โˆ’1xโˆ’2x+2โ‰ค0

i.e.,

x(x+2)โˆ’(x+2)(xโˆ’2)โˆ’2x(xโˆ’2)x(xโˆ’2)(x+2)โ‰ค0

Or,

x2+2xโˆ’x2+4โˆ’2x2+4xx(xโˆ’2)(x+2)โ‰ค0

Or,

โˆ’2x2+6x+4x(xโˆ’2)(x+2)โ‰ค0

Or,

x2โˆ’3xโˆ’2x(xโˆ’2)(x+2)โ‰ฅ0
.

Using quadratic formula:

i.e.,

[xโˆ’(+3โˆ’9+82)][xโˆ’(+3+9+82)]x(xโˆ’2)(x+2)โ‰ฅ0

Or,

[xโˆ’(3โˆ’172)][xโˆ’(3+172)]x(xโˆ’2)(x+2)โ‰ฅ0

On arranging the roots of the given polynomial equation in increasing order and plotting them on the number line,

Quadratic Equations IIT JEE

โˆ’2โ†’3โˆ’172โ†’0โ†’2โ†’3+172

Therefore, from the above graph:

xโˆˆ(โˆ’2,3โˆ’172]โˆช(0,2)โˆช[3+172,+โˆž)

 

Modulus Inequalities โ€“ Wavy Curve Method

1,835

Graphs & Types of Modulus Functions

2,261

Solving Modulus Inequalities

1,737

Fundamental Properties โ€“ Inequalities

20,469

Inequalities โ€“ Wavy Curve Method

2,44,790

Frequently Asked Questions

Q1

What do you mean by quadratic inequalities?

Consider a quadratic polynomial ax2+bx+c. If it is less than or greater than some number or any other polynomial with a power less than or equal to 2, then we can call it a quadratic inequality. For example, x2+4x+5 > 3.

Q2

How do you solve quadratic inequalities?

First, we have to factorise the quadratic expression. Then, find the range of values of x which satisfy the quadratic inequality.

Q3

What happens to the sign of the inequality if we multiply both sides of the inequality by a non-zero positive number?

The sign of inequality does not change when both sides are multiplied by a non-zero positive number.

Test your knowledge on Quadratic Inequalities

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*