JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

Trigonometry Ratios

Trigonometry is one of the important branches of mathematics that studies triangles and their measurements. In this article, you will learn trigonometric ratios, graphs of trigonometric functions, identities, maximum and minimum values, main formulas and much more. 

Trigonometric Ratios

Trigonometric ratios 1

sinθ=ABAC=opphyp
cosθ=BCAC=adjhyp
tanθ=ABBC=oppadj
cotθ=BCAB
secθ=ACBC
cosecθ=ACAB

Trigonometric Circular Function

Trigonometric circular function

<AOP=arcAPr=lr

cos θ = x

sin θ = y

tanθ=xy

Graphs of T Ratios

  • Sine

y = sin x

Graph of sine function

Domain R

Range (-1,1)

  • Cosine

y = cos x

Graph of cosine function

  • Tangent

y = tan x

Graph of tangent function

  • Co – tangent

y = cot x

Graph of co tangent function

  • Secant
y=secx,

Graph of secant function

Domain:R{(2x+1)π2}
and

Range:(1)(1,)
  • Cosecant

y = cosec x

Graph of cosecant function

Domain:R{nπ}
and

Range:(1)(1,)

Also Read:

Trigonometric Equations and Its Solutions

Trigonometry JEE Main Previous Year Questions

Inverse Trig JEE Main Previous Year Questions

Trignometric Identities

sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=cosec2θ
sin4θ+cos4=12sin2θcos2θ
sin6θ+cos6=13sin2θcos2θ

Remember:

secθtanθ=1secθ+tanθ
and

cosecθcotθ=1cosecθ+cotθ

T-Ratio at Some Standard Angles

T ratio of standard angles

T-Ratio at Some Specific Angles

T-ratio

712
15o
2212
18o
sinθ
42622
3122
1222
514
cosθ
4+2+622
3+122
122+2
1410+25
tanθ
(32)(21)
23
21
25+10155

Maximum and Minimum Value of Standard Trigonometric Expressions

  • Maximum value of
    acosθ±bsinθ=a2+b2
  • Minimum value of
    acosθ±bsinθ=a2+b2
  • Maximum value of
    acosθ±bsinθ+c=c+a2+b2
  • Minimum value of
    acosθ±bsinθ+c=ca2+b2

Problems on Trigonometry

Example 1: If

sec4xcosec4x2sec2x+2cosec2x=154
. Find tan x.

Solution:

(sec4x2sec2x)(cosec4x2cosec2x)=154

or

(sec4x2sec2x+1)(cosec4x2cosec2x+1)=154
(sec2x1)2(cosec2x1)2=154
(tan2x)2(cot2x)2=154
tan4x1tan4x=154
tan4x1tan4x=414

On comparing,

tan4x=4
tan2x=2
tanx=±2

Example 2:

If sin θ, cos θ, and tan θ are in G.P., then

cos9θ+cos6θ+3cos3θcos2θ1=?

Solution:

sinθ.tanθ=cos2θ
sin2θ=cos3θ

Now,

(cos3θ)3+(cos3θ)2+3cos3θcos2θ1
=sin6θ+sin4θ+3sin2θcos2θ1
=sin6θ+sin4θ(13sin2θcos2θ)
=sin6θ+sin4θ(sin6θ+cos6θ)
=sin4θcos6θ
=sin4θ(cos3θ)2
=sin4θsin4θ=0

Example 3:

If sec x – tan x = P, then sec x = ?

Solution:

Given: sec x – tan x = P ….(1)

We know,

secxtanx=1secx+tanx

or

secx+tanx=1P.(2)

Adding (1) and (2)

2secx=P+1P

or

secx=P2+12P

Example 4:

Prove that

sin(420).cos(390)+cos(660)sin(330)=1

Solution:

sin(420)cos(390)+cos(660)sin330
=sin(2π+60)cos(2π+30)+cos(4π60)sin(2π30)
=sin60cos30+cos60(sin30)
=32.3212.12
=3414=44=1.

Hence proved.

Trigonometric Ratios of Compound Angles

The algebraic sum of two or more angles is generally called compound angles, and angles are known as constituent angles.

Some Important Results

  1. sin(A±B)=sinAcosB±cosAsinB
  2. cos(A±B)=cosAcosBsinAsinB
  3. tan(A±B)=tanA±tanB1tanAtanB
  4. cot(A±B)=cotAcotB1cotB±cotA
  5. sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2A
  6. cos(A+B)cos(AB)=cos2Asin2B=cos2Bsin2A
  7. sin(A+B+C)=sinAcosBcosC+sinBcosAcosC+sinCcosAcosBsinAsinBsinC
  8. cos(A+B+C)=cosAcosBcosCcosAsinBsinCcosBsinAsinCcosCsinAsinB
  9. tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanA

Remember

If A+B+C = 0, then

tanA+tanB+tanC=tanAtanBtanC

Let us solve some problems to understand the concept in a better way.

Example 1

If sinα=35&cosβ=941α,βI quadrant.

Find sin(α – β).

Solution

sinα=35
sin2α+cos2α=1
cos2α=1925=1625
cosα=45,45
as in first quadrant.

cosβ=941
cos2β+sin2β=1
sin2β=1811681=16001681
sinβ=4041
sin(αβ)=sinαcosβcosαsinβ
=35×94145×4041=27160205
=133205.

Example 2

Find value of sin(BC)cosBcosC+sin(CA)cosCcosA+sin(AB)cosAcosB.

Solution

sinBcosCcosBsinCcosBcosC+sinCcosAcosCsinAcosCcosA+sinAcosBcosAsinBcosAcosB
tanBtanC+tanCtanA+tanAtanB=0

Transformation Formulae

  1. 2sinAcosB=sin(A+B)+sin(AB)
  2. 2sinBcosA=sin(A+B)sin(AB)
  3. 2cosAcosB=cos(A+B)+cos(AB)
  4. 2sinAsinB=cos(AB)cos(A+B)
  5. sinC+sinD=2sin(C+D2)cos(CD2)
  6. sinCsinD=2cos(C+D2)sin(CD2)
  7. cosCcosD=2cos(C+D2)cos(CD2)
  8. cosCcosD=2sin(C+D2)sin(DC2)

T-Ratio of Multiple Angles

  1. sin2A=2sinAcosA=2tanA1+tan2A
  2. cos2A=2cos2A1=12sin2A=1tan2A1+tan2A=cos2Asin2A
  3. tan2A=2tanA1tan2A
  4. sin3A=3sinA4sin3A
  5. cos3A=4cos3A3cosA
  6. tan3A=3tanAtan3A13tan2A

Remember

1+cos2A=2cos2A

 

1cos2A=2sin2A

 

1cos2A1+cos2A=tan2A

Values of T-Ratios at Some Useful Angles

  1. sin75=3+122=cos15
  2. cos75=3122=sin15
  3. tan75=2+3=cot15
  4. cot75=23=tan15
  5. sin9=3+5554=cos81
  6. cos9=3+5554=sin81

Important Results

sinθsin(60θ)sin(60+θ)=14sin3θ
cosθcos(60θ)cos(60+θ)=14cos3θ
tanθtan(60θ)tan(60+θ)=tan3θ

Let’s solve a few more examples

Example 1

Find value of sinAsin2A+sin3Asin6A+sin4Asin13A2sinAcos2A+sin3Acos6A+sin4Acos13A.

Solution

cos(A)cos(3A)+cos3Acos9A+cos9Acos17Asin3A+sin(A)+sin9A+sin(3A)+sin(17A)+sin(9A)
=cosAcos17Asin17AsinA
=2sin9Asin8A2cos9Asin8A

= tan 9A

Example 2

sin25+sin210+sin215+.+sin290=?

Solution

sin25+sin210+.+sin285+sin290
=sin25+sin210+.+cos25+sin290
=(sin25+cos25)+.+sin245+sin290

= [1 + 1 + … + 1] + (1/√2)2 + 1

=8×1+1+12
=8+1+12=912

Example 3

Prove that

sinα+sin(α+2π3)+sin(α+4π3)=0

Solution

2sin(2α2+4π6)cos(4π6)+sin(α+2π3)
=2sin(α+2π3)cos(2π3)+sin(α+2π3)
=2×(12)sin(α+2π3)+sin(α+2π3)
=sin(α+2π3)+sin(α+2π3)

= 0

Example 4

If asinθ=bsin(θ+2π3)=csin(θ+4π3), then
prove that ab + bc + ca = 0.

Solution

asinθ=bsin(θ+2π3)=csin(θ+4π3)=k
sinθ=ka
sin(θ+2π3)=kb
sin(θ+4π3)=kc

We know

sinθ+sin(θ+2π3)+sin(θ+4π3)=0
ka+kb+kc=0
k(bc+ac+ab)abc=0
ab+bc+ca=0

Summation of Series in Trigonometry

1.

sinα+sin(α+β)+sin(α+2β)+.+sin(α+(n1)β)=sin[α+(n1)2β]sinnβ2sinβ2

When the angles of sine are in AP, the sum of the sine series is given by the above formula.

However, if α = β in the above case,

Then

sinα+sin2α+sin3α+.+sinα=sin(n+12)αsinnα2sinα2

2. When cosine angles are in AP,

cosα+cos2α+cosα+.+cosnα=cos(n+12)αsinnα2sinα2

Remember

If A, B and C are angles of Δ,

  1. sin(B+C)=sinA
  2. cos(B+C)=cosA
  3. sin(B+C2)=cosA2
  4. cos(B+C2)=sinA2
  5. sin2A+sin2B+sin2C=4sinAsinBsinC
  6. cos2A+cos2B+cos2C=14cosAcosBcosC
  7. tanA+tanB+tanC=tanAtanBtanC

Trigonometric Equations

A solution of a trigonometric equation is the value of the unknown angle that satisfies the equation.

Following are general solutions of trigonometric equations in the standard form:

Equation General Solution
sinθ=0
θ=nπnz
cosθ=0
θ=(2n+1)π2nz
tanθ=0
θ=nπ,nz
sinθ=sinα
θ=nπ+(1)nα,nz
cosθ=cosα
θ=2nπ±α,nz
tanθ=tanα
θ=nπ+α,nz
sin2θ=sin2αcos2θ=cos2αtan2θ=tan2α}θ=nπ±α,nz

Example 1

Solve

4sinxsin2xsin4x=sin3x

Solution

4sinxsin(3xx)sin(3x+x)=sin3x
,

4sinx(sin23xsin2x)=sin3x
,

4sinx.sin23x4sin3x=3sinx4sin3x
,

4sinxsin23x3sinx=0
,

sinx(4sin23x3)=0
,

sinx=0andsin23x=34
,

nz
,

sin23x=34
,

sin23x=(34)2=sin2π3
,

3x=mπ±π3mz
,

x=mπ3±π9

Example 2

Solve

sin3θ+cos2θ=0

Solution

cos2θ=sin3θ
.

Taking +ve sign

θ=2nπ+π2+3θ
,

θ=2nπ+π2
,

θ=2nππ2
or

Taking -ve sign

θ=2nπ+π23θ;nz
,

4θ=2nπ+π2
,

θ=nπ2+π8

Example 3

Solve

3sec2θ=2

Solution

3cos2θ=2
,

cos2θ=32=cosπ6
,

2θ=2nπ±π6nz
,

θ=nπ±π12nz

Properties and Solutions of Triangle

Solutions of Triangle

Solutions of triangle

Here A, B and C are the angles, and a, b and c are the lengths of sides of the triangle ABC.

Sine Rule

The sine rule relates the length of the sides of a triangle to the sines of its angles. 

asinA=bsinB=csinC=2R

Where 2R is the diameter of the triangle’s circumcircle.

Cosine Rule

cosA=b2+c2a22bc
and

cosB=a2+c2b22ac
and

cosC=a2+b2c22ab

Area of Δ

=12bcsinA
=12casinB
=12absinC
=S(Sa)(Sb)(Sc)
=12×base×height

Projection Formula

a=b cos c+c cos B

b=c cos A+a cos C

c=a cos B+b cos A

Napier’s Analogy

This is also called the Law of Tangents.

tan(BC3)=(bcb+c)cotA2
,

tan(CA2)=(cac+a)cotB2
,

tan(AB2)=(aba+b)cotC2

Example

In a triangle ABC,

a+b13=a+c12=b+c11

Then prove that

cosA7=cosB19=cosC25

Solution

b+c11=c+a12=a+b13=k
,

b+c=11k,c+a=12k,a+b=13k
,

2(a+b+c)=36k
,

a+b+c=18k

b+c=11k

a=7k

Similarly, b=6k

c=5k

cosA=b2c2a22bc=36k2+25k249k260k2=15

Similarly,

cosB=1935andcosC=57
,

cosA:cosB:cosC=15:1935:87

=7:19:25

Circum Circle of a Triangle

The circle passing through the vertices of a triangle is called the circum circle of a triangle.

The radius is the circum radius.

R=a2sinA=b2sinB=c2sinC

Also,

R=abc4Δ
;
ΔistheareaofΔABC

Inradius of a Triangle

r=ΔswhereΔ=areaofΔ
,

s=a+b+c2
,

r=(sa)tanA2=(sb)tanB2=(sc)tanC2
,

r=4RsinA2sinB2sinC2

Example

In a triangle ABC, angle C = 60 degrees.

Then prove that

1a+c+1b+c=3a+b+c

Solution

cosc=12=a2+b2c22ba
,

ab=a2+b2c2(i)
,

1a+c+1b+c=3a+b+c
,

a+b+c+c(a+c)(b+c)=3a+b+c
,

(a+b+2c)(a+b+c)=3(a+c)(b+c)
,

a2+b2+2ab+2c2+3ac+3bc=3ab+3ac+3bc+3c2
,

a2b2ab=c2(ii)

From (i) and (ii), we can say

1a+c+1b+c=3a+b+c

Trigonometry Videos

Trigonometry Phase 1 Important Questions

Trigonometry Phase 1 Important Questions
1,307

Trigonometry Phase 2 Important Questions

Trigonometry Phase 2 Important Questions
1,580

Solving Trigonometric Functions

6,099

Trigonometry

19,52,104

Trigonometric Functions

3,00,909

JEE Trigonometry

2,91,695

Trigonometric Functions Session 1

19,52,104

Trigonometric Functions Session 2

31,721

Trigonometric Identities

3,55,079

Transformation of Graphs

1,11,494

Trigonometric Ratios of Compound Angles

14,748

Trigonometric Equations General Solution

70,499

Frequently Asked Questions

Q1

What is trigonometry?

Trigonometry is a branch of mathematics that deals with the relationship between the sides of a triangle (right triangle) with its angles.

Q2

Name the six basic trigonometric functions.

The basic trigonometric functions are sin, cos, tan, sec, cosec and cot.

Q3

Give the Pythagorean trigonometric identities.

sin2a + cos2a = 1
1 + tan2a = sec2a
1 + cot2 a = cosec2a

Q4

Give an application of trigonometry.

The height of an object or the distance between two distinct objects can be calculated using trigonometric ratios.

Test your Knowledge on Trigonometry

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*