JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

Proof of the Vector Triple Product

DefinitionFormulaProofPropertiesSolved Examples

Download Complete Chapter Notes of Mathematical Tools
Download Now

Vector Triple Product is a branch in vector algebra where we deal with the cross product of three vectors. The value of the vector triple product can be found by the cross product of a vector with the cross product of the other two vectors. It gives a vector as a result. When we simplify the vector triple product, it gives us an identity name as BAC-CAB identity.

Vector Triple Product Definition

Vector triple product of three vectors

\(\begin{array}{l}\vec a, \vec b, \vec c\ \text{is defined as the cross product of vector}\ \vec{a}\end{array} \)
Β  Β 
\(\begin{array}{l}\text{with the cross product of vectors}\ \vec b\ and\ \vec c,\end{array} \)
\(\begin{array}{l}i.e.,\ \vec a \times (\vec b \times \vec c)\end{array} \)

Here,

\(\begin{array}{l}\vec a \times (\vec b \times \vec c)\ \text{is coplanar with the vectors}\ \vec{b}\ \text{and}\ \vec{c}\ \text{and perpendicular to}\ \vec{a}.\end{array} \)

Hence we can write

\(\begin{array}{l}\vec a \times (\vec b \times \vec c)\ \text{as linear combination of vectors}\ \vec{b}\ \text{and}\ \vec{c}.\end{array} \)

That is,

\(\begin{array}{l}\vec a \times (\vec b \times \vec c) = x \vec b + y \vec c\end{array} \)

Vector Triple Product Formula

\(\begin{array}{l}\vec a \times (\vec b \times \vec c) = (\vec a . \vec c) \vec b\ – (\vec a . \vec b) \vec c\end{array} \)

and

\(\begin{array}{l}(\vec a \times \vec b) \times \vec c = (\vec a . \vec c) \vec b\ – (\vec b . \vec c) \vec a\end{array} \)

In general,

\(\begin{array}{l}\vec a \times (\vec b \times \vec c) \neq (\vec a \times \vec b) \times \vec c\end{array} \)

Vector Triple Product Proof

We can write

\(\begin{array}{l}(\vec a \times \vec b) \times \vec c\ \text{as a linear combination of vectors}\ \vec{a}\ \text{and}\ \vec{b}.\end{array} \)

So,

\(\begin{array}{l}(\vec a \times \vec b) \times \vec c = x \vec a + y \vec b\end{array} \)
\(\begin{array}{l}\Rightarrow \vec c . (\vec a \times \vec b) \times \vec c = \vec c . (x \vec a + y \vec b)\end{array} \)
\(\begin{array}{l}= x . (\vec c . \vec a) + y (\vec c . \vec b)\end{array} \)
\(\begin{array}{l}\Rightarrow 0 = x . (\vec a . \vec c) + y (\vec b . \vec c)\end{array} \)
\(\begin{array}{l}\Rightarrow \frac{x}{\vec b . \vec c} = \frac{-y}{\vec a . \vec c} = \lambda\end{array} \)
\(\begin{array}{l}\text{Substituting value of x and y in}\ (\vec a \times \vec b) \times \vec c = x \vec a + y \vec b,\end{array} \)
we have;

\(\begin{array}{l}(\vec a \times \vec b) \times \vec c = (\lambda \vec b . \vec c) \vec a + (-\lambda \vec a . \vec c) \vec b\end{array} \)
\(\begin{array}{l}=(\lambda \vec b . \vec c) \vec a – (\lambda \vec a . \vec c) \vec b\end{array} \)
\(\begin{array}{l}\text{It is valid for every value of}\ \vec a, \vec b, \vec c\ \text{because it is an identity}.\end{array} \)

Put

\(\begin{array}{l} \vec a = \hat i , \vec b = \hat j\ and\ \vec c = \hat i\end{array} \)
\(\begin{array}{l}\Rightarrow (\hat i \times \hat j) \times \hat i = (\lambda \hat j . \hat i) \hat i – (\lambda \hat i . \hat i) \hat j\end{array} \)
\(\begin{array}{l}\Rightarrow \hat j = – \lambda \hat j \end{array} \)
\(\begin{array}{l}\Rightarrow \lambda = -1 \end{array} \)

Hence,

\(\begin{array}{l}(\vec a \times \vec b) \times \vec c = (\vec a . \vec c)\vec b – (\vec b . \vec c)\vec a \end{array} \)

Properties

  • A vector triple product is a vector quantity.
  • \(\begin{array}{l}\text{Unit vector coplanar with}\ \vec a\ \text{and}\ \vec b \end{array} \)
    Β 
    \(\begin{array}{l}\text{and perpendicular to}\ \vec c\ \text{is}\ \pm \frac{(\vec a \times \vec b)\times \vec c}{|(\vec a \times \vec b)\times \vec c|}.\end{array} \)
  • \(\begin{array}{l}\vec a \times (\vec b \times \vec c) \neq (\vec a \times \vec b) \times \vec c\end{array} \)
    .
  • Vector Triple Product Properties

Note that,

\(\begin{array}{l}\text{if}\ \vec a, \vec b, \vec c\ \text{are non-coplanar vector then}\end{array} \)
Β 
\(\begin{array}{l} \vec a \times \vec b, \vec b \times \vec c\ and\ \vec c \times \vec a\ \text{are also non-coplanar.}\end{array} \)

 

Some other useful results:

Vector Triple Product Useful Results

Solved Examples

Example 1:

\(\begin{array}{l}\text{Find the value of}\ \hat i \times (\hat j \times \hat k) + \hat j \times (\hat k \times \hat i).\end{array} \)

Solution:

\(\begin{array}{l} \hat i \times (\hat j \times \hat k) + \hat j \times (\hat k \times \hat i)Β  = \hat i \times \hat i + \hat j \times -\hat j = 1-1= 0 \end{array} \)

Example 2:

\(\begin{array}{l}\text{If}\ \vec a, \vec b, \vec c\ \text{are three vectors such that}\end{array} \)
Β 
\(\begin{array}{l}| \vec a| = 1,\ | \vec b|=2,\ | \vec c|=1,\ \text{and}\ \vec a \times (\vec a \times \vec b) + \vec c = 0,\end{array} \)
Β 
\(\begin{array}{l}\text{then find the acute angle between}\ \vec a\ \text{and}\ \vec b.\end{array} \)

Solution:

\(\begin{array}{l}\text{Let A be the angle between}\ \vec a\ \text{and}\ \vec b.\end{array} \)

Then,

\(\begin{array}{l} \vec a . \vec b = |\vec a||\vec b|cos\ A\end{array} \)

= 1.2. cos A

= 2 cos A

But

\(\begin{array}{l} \vec a \times (\vec a \times \vec b) + \vec c = 0\end{array} \)
\(\begin{array}{l}\Rightarrow (\vec a . \vec b)\vec a – (\vec a . \vec a)\vec b + \vec c = 0\end{array} \)
\(\begin{array}{l}\Rightarrow 2\ cos\ A \vec a – \vec b + \vec c = 0\end{array} \)
\(\begin{array}{l}\Rightarrow 2\ cos\ A \vec a – \vec b =- \vec c\end{array} \)

Squaring both sides, we have;

\(\begin{array}{l}\Rightarrow [2\ cos\ A \vec a – \vec b]^2 = [- \vec c]^2\end{array} \)
\(\begin{array}{l}\Rightarrow 4 cos^2 A |\vec a|^2 – 4 cos A \vec a . \vec b + |\vec b|^2 = |\vec c|^2 \end{array} \)

β‡’ 4 cos2 A – 4 cos A . 2 cos A + 4 = 1

β‡’ 4 cos2 A – 8 cos2 A + 4 = 1

\(\begin{array}{l}\Rightarrow 4 (1 – cos^2 A) = 1 \end{array} \)

β‡’ 4 sin2 A = 1

or sin A = 1/2

or A = Ο€/6

[neglected -ve value]

Example 3:

\(\begin{array}{l}\text{If}\ \vec a, \vec b, \vec c\ \text{are coplanar, then prove that}\end{array} \)
Β 
\(\begin{array}{l} \vec a \times \vec b,\ \vec b \times \vec c,\ \vec c \times \vec a\ \text{are also coplanar.}\end{array} \)

Solution:

\(\begin{array}{l}\text{If}\ \vec a, \vec b, \vec c\ \text{are coplanar then}\end{array} \)
\(\begin{array}{l}[\vec a\;\; \vec b\;\; \vec c]\end{array} \)
\(\begin{array}{l}\Rightarrow [\vec a\;\; \vec b\;\; \vec c]^2 = 0\end{array} \)
\(\begin{array}{l}\Rightarrow [\vec a \times \vec b\;\; \vec b \times \vec c\;\; \vec c \times \vec a] = 0\end{array} \)
\(\begin{array}{l}\text{So we can say that}\ \vec a \times \vec b, \vec b \times \vec c, \vec c \times \vec a\ \text{are coplanar}.\end{array} \)

Example 4:

\(\begin{array}{l}\text{Let}\ \vec c = 2 \hat i + \hat j – 2 \hat k\ \text{and}\ \vec b = \hat i + \hat j \end{array} \)
\(\begin{array}{l}\text{and if vector}\ \vec a\ \text{is such that}\ \vec{c}.\vec{a} = |\vec a|,\ |\vec a – \vec c| = 2\sqrt{2}\end{array} \)
Β 
\(\begin{array}{l}\text{and angle between}\ (\vec c \times \vec b)\ \text{and}\ \vec{a}\ \text{is}\ \frac{\pi}{6},\end{array} \)
Β 
\(\begin{array}{l}\text{then find the value of}\ |(\vec c \times \vec b) \times \vec a|.\end{array} \)

Solution:

\(\begin{array}{l} \vec c = 2 \hat i + \hat j – 2 \hat k\ and\ \vec b = \hat i + \hat j \end{array} \)
so,

\(\begin{array}{l} |\vec c| = 3\ \text{and}\ |\vec b| = \sqrt{2}\end{array} \)
\(\begin{array}{l} |\vec a – \vec c| = 2\sqrt{2}\ (\text{Given})\end{array} \)

Squaring both sides, we have;

Example 5: IfΒ 

\(\begin{array}{l}\mathbf{a}\times \mathbf{b}=\mathbf{c},\,\,\mathbf{b}\times \mathbf{c}=\mathbf{a}\end{array} \)
and a, b, c be moduli of the vectors a, b, c respectively, then find the values of a and b.

Solution:Β 

a = b Γ— c and a Γ— b = c

∴ a is perpendicular to both b and c, and c is perpendicular to both a and b.

Therefore, a, b, and c are mutually perpendicular.

Now, a = b Γ— c = b Γ— (a Γ— b) = (b . b) a βˆ’ (b . a) b or

\(\begin{array}{l}\mathbf{a}={{b}^{2}}\mathbf{a}-(\mathbf{b}\,.\,\mathbf{a})\mathbf{b}={{b}^{2}}\mathbf{a}, \left\{ \text because \,\mathbf{a}\,\bot \,\mathbf{b} \right\} \\\Rightarrow 1={{b}^{2}}, \\\therefore \,\mathbf{c}=\mathbf{a}\times \mathbf{b}=ab\sin 90{}^\circ \,\mathbf{\hat{n}}\end{array} \)

Take the moduli of both sides, then c = ab, but b = 1 β‡’ c = a.

Example 6:Β Given the following simultaneous equations for vectors x and y.

x + y = a …..(i)

x Γ— y = b …..(ii)

x . a = 1 …..(iii)

Then find the values of x and y.

Solution:Β 

Multiplying (i) by scalar “a”, we get;

a . x + a . y = a2

∴ a . y = a2 βˆ’ 1 ..(iv),

{By (iii)} Again a Γ— (x Γ— y) = a Γ— b or (a . y) x βˆ’ (a . x) y = a Γ— b

(a2 βˆ’ 1) x βˆ’ y = a Γ— b ..(v),

Adding and subtracting (i) and (v), we get;

x = [a + (a Γ— b)] / [a2] and y = a βˆ’ x

Vector Triple Point

Frequently Asked Questions

Q1

What do you mean by vector triple product?

Let a, b, and c be three vectors. The vector product of a, b, and c is the cross product of vector a with the cross product of vector b and vector c.

Q2

Give the vector triple product formula.

If a, b, c are three vectors, then
a Γ— (b Γ— c) = (a.c)b – (a.b)c.
(a Γ— b) Γ— c = (a.c)b – (b.c)a.

Q3

Is the vector triple product associative?

No, the vector triple product is not associative.

Test your Knowledge on Vector triple product

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*