Students can refer to this page to find the solutions for all the problems asked in the KCET 2015 Mathematics paper. These questions are answered by subject experts at BYJU’S and have been prepared in a detailed and easy to understand manner. Aspirant can use the paper to practise solving the questions and develop more efficient problem solving skills required for the examination. Students can also download the question paper with solutions in a PDF format for offline use.
KCET 2015 – Maths

Question 1:

f(x)=12tanπx21<x<1
and
g(x)=3+4x4x2
. Find domain of (f+x)

KCET 2015 Maths Solutions


Answer: a

g(x)=3+4x4x2

Domain of g(x) ⇒ 3+ 4x – 4x2≥0

4x2 – 4x – 3 ≤0

(2x – 1) (2x –3) ≤ 0

x = -1/2, 3/2

Solutions of KCET 2015 Maths

Question 2: Write the set builder form A = {–1, 1}


a. A = {x : x is a real number}
b. A = {x : x is an integer}
c. A = {x : x is a root of the equation x2 = 1}
d. A = {x : x is a root of the equation x2 + 1 = 0}

Answer: c

Consider the set A {–1, 1}

Here –1 and 1 are the roots of the equation x2–1 = 0

So set A in set builder form can be written as

A = {x : x is a root of equation x2 – 1 = 0}

Question 3: If the operation ⊕ is defined by a ⊕ b = a2 + b2 for all real number ‘a’ and ‘b’, then (2 ⊕ 3) ⊕ 4 = ________


a. 181
b. 182
c. 184
d. 185

Answer: d

Given that

a ⊕ b = a2 + b2

We have

(2 ⊕3) ⊕4 = (22 + 32) ⊕4

= (4 + 9) ⊕4

= 13 ⊕4 {Using given condition}

= 132 + 42

= 169 + 16

= 185

Question 4: If

z=(3+i)3(3i+4)2(8+6i)2
, then
|z|
is equal to


a. 0
b.1
c. 2
d. 3

Answer: c

Solved Paper of KCET 2015 Maths

Question 5: If α and β are the roots of x2 – ax + b2 = 0, then a2 + b2 = 0, then a2 + b2 is equal to _________


a. a2 –2b2
b. 2a2– b2
c. a2 – b2
d. a2 + b2

Answer: a

KCET 2015 Maths Solved Paper

Question 6: If the 2nd and 5th term of G.P. are 24 and 3 respectively, then the sum of 1st six terms is ______


a. 189/2
b. 189/5
c. 179/2
d. 2/189

Answer: a

2nd term of G.P ⇒ar = 24 ⇒ a = 24/r …..(1)

5th term of G.P. ⇒ ar4 = 3 …..(2)

Eq. (1) put in Eq (2)

⇒ (24/r). r4 = 3

⇒ 8r3 = 1

r = 1/2

So

a = 24/(1/2) =48

Sum of first six terms is

⇒ a + ar + ar2 + ar3 + ar4 + ar5

⇒ 48 + 24 + 12 + 6 + 3 + (3/2)

⇒ 189/2

Question 7: The middle term of expansion of

(10x+x10)10


a.7C5
b. 8C5
c. 9C5
d. 10C5

Answer: d

n = 10⇒even

middle terms

=(102+1)th=6thterm
T6=T5+1=10C5(10x)5(x10)5=10C5

Question 8: If

|2ax1y12bx2y22cx3y3|=abc2
not equal to zero, then the area of the triangle whose vertices are
(x1a,y1a)
,
(x2b,y2b)
,
(x3c,y3c)
is


a. (1/4) abc
b. (1/8) abc
c. (1/4)
d. (1/8)

Answer: d

Area of triangle whose vertices are

(x1a,y1a)
,
(x2b,y2b)
,
(x3c,y3c)
is

KCET 2015 Maths Solved Question Paper

KCET 2015 Maths Question Paper with Answers

= (1/4abc)(abc/2)

= 1/8

Question 9: The shaded region shown in fig. is given by the equation

Question Paper with Answers of KCET 2015 Maths


a. 14x + 5y ≥70 y ≤14 and x – y ≤ 5
b. 14x + 5y ≥70 y ≤ 14 and x – y ≥5
c. 14x + 5y ≤70 y ≤ 14 and x – y ≥ 5
d. 14x + 5y ≥70 y ≥ 14 and x – y ≥5

Answer: a

Equation of line passing through the coordinate (0, 14) and (9, 14) is

y = 14

Consider the equation of the line joining (0, 14) and (5, 0) applying intercept form gives us

x5+y14=1

⇒14x + 5y = 70

The equation of the line joining (5, 0) and (19, 14) is given by

y14x19=y0x5

⇒ xy – 14x – 5y + 70 = xy – 19y

x – y = 5

Consider the figure and observe the shaded region the inequalities can be written as

y ≤ 14

14x + 5y ≥ 70

x – y ≤ 5.

Question 10: ~ [(–p) ^q] is logically Equivalent to


a. P ∨ (~q)
b. P ^ (~q)
c. ~ [p^ (~q)]
d. ~ (p^ q)

Answer: Bonus

Question 11: The value of

sin1(223)+sin1(13)


a. π/6
b. π/2
c. π/4
d. 2 π/3

Answer: b

Solved Question Paper of KCET 2015 Maths

Question 12: If the eccentricity of the hyperbola

x2a2y2b2=1
is 5/4 and 2x + 3y – 6 = 0

Is a focal chord of the hyperbola, then the length of transverse axis is equal to


a. 12/5
b. 24/5
c. 6/5
d. 5/24

Answer: b

Given hyperbola has focus (ae, 0) which will lie on 2x + 3y – 6 = 0 as it is focal chord

Therefore, 2ae – 6 = 0

2ae = 6

ae =3 (since e =5/4)

a(5/4) = 3 ; a = (12/5)

Length of transverse axis = 2 a

= 2 × (12/5) = (24/5)

Question 13: If

a=i+2j+2k
,
|b|=5
and the angle between
a=5
and
b=5
is π/6, then the area of the triangle formed by these two vectors as two sides is


a. 15/2
b. 15
c. 15/4
d. 15√3/2

Answer: c

a=i^+2j^+2k^
|a|=(1)2+(2)2+(2)2
|a|=1+4+4
|a|=3

Required area =

12|a×b|=12×a×b×sinθ
=12×3×5×sin(π6)
(since θ = π/6)

= 15/4

Question 14: Let

a=i2j+3k
if
b
is a vector such that
a.b=|b|2
and
|ab|=7
, then
|b|=
—————


a. 7
b. 14
c. √7
d. 21

Answer: c

|ab|=7

Squaring both side

|a|2+|b|22ab=7
(since
a.b=|b|2
)

[(1)2+(2)2+(3)2]2+|b|22|b|2=7
14|b|2=7
|b|2=7
|b|=7

Question 15: If direction cosines of a vector of magnitude 3 are (2/3), (9/3), (2/3) and a > 0, then vector is _______


a. 2i + j + 2k
b. 2i – j + 2k
c. i –2j + 2 k
d. i + 2j + 2k

Answer: Bonus

Question 16: Equation of line passing through the point (2, 3, 1) and parallel to the line of intersection of the plane x – 2y – z + 5 = 0 and x + y + 3z = 6 is


a.

x25=y34=z13

b.
x25=y34=z13

c.
x25=y34=z13

d.
x24=y33=z12

Answer: b

Consider the planes

X – 2y – Z + 5 = 0 and x + y + 3z = 6

Let the DR’s of the line passing through the intersection of the given plane be a, b and C

a– 2b – C = 0 and a + b + 3c = 0

Thus

a6+1=b3+1=C1+2
a5=b4=C3

Now the required line passes through (2, 3, 1) and is parallel to the above line.

The equation of the required line is,

x25=y34=z13

Question 17: Foot of perpendicular drawn from the origin to the plane 2x – 3y + 4z = 29 is _______


a. (5, –1, 4)
b. (2, –3, 4)
c. (7, –1, 3)
d. (5, –2, 3)

Answer: b

Consider the equation of plane,

2x – 3 y + 4z = 29

The DR’s of the line perpendicular to line form origin is 2, – 3 and 4

The equation of the line will be

x02=y03=z04=λ

So the coordinates of the foot is (2 λ, –3 λ, 4 λ)

Since the foot lies on the plane, hence

4 λ+9 λ + 16 λ = 29

29 λ = 29

29 λ= 1

Thus, the coordinate of the foot are (2, –3, 4)

Question 18: If two dice are thrown simultaneously, then the probability that the sum of the number which comes up on the dice to be more than 5 is ___________.


a. 5/36
b. 1/6
c. 5/18
d. 13/18

Answer: d

KCET 2015 Maths Solved Sample Paper

Question 19: If y= f(x2+2) and f’(3) =5, then dy/dx at x =1 is ___________.


a. 5
b. 25
c. 15
d. 10

Answer: d

y = f (x2 + 2)

Differentiate w.r.t x

(dy/dx) = f `(x2 + 2). 2x

Solved Sample Paper of KCET 2015 Maths

= f `(3) × 2

= 2(5) = 10.

Question 20: If x = a cos3θ, y = a sin3θ, then 1+ (dy/dx)2 is ___________.>


a. tan θ
b. tan2 θ
c. Sec2 θ
d. 1

Answer: c

Consider the expression.

X = acos3θ

Differentiate w.r.t θ

(dx/d θ) = –3acos2 θ. sin θ ……(1)

and y = asin3 θ

Differentiate w.r.t θ

(dy/d θ)= 3asin2 θ. cos θ ……..(2)

Divide equation (2) by (1)

Solved Practice Paper of KCET 2015 Maths

Question 21: Slope of Normal to the curve

y=x21x2
at (-1,0) is


a. 1/4
b. -1/4
c. 4
d. –4

Answer: a

y=x21x2

Differentiate w.r.t x

dydx=2x+2x3
dydx|x1=2(1)+2(1)3

= – 2 – 2 = –4

Slope=1dydx=14=14

Question 22:

1x2(x4+1)34dx
is equal to ___________.


a.

(1+x4)1/4x+C

b.
(1+x4)1/4x2+C

c.
(1+x4)1/42x+C

d.
(1+x4)3/4x+C

Answer: a

Let

 KCET 2015 Maths Practice Paper with Answers

Question 23: If f : R → R is defined by f(x) = x/(x 2+2), find f(f(2))


a. 1/29
b. 10/29
c. 29/10
d.29

Answer: b

Practice Paper with Answers of KCET 2015 Maths

Question 24: Evaluate

|cos15sin15sin75cos75|


a. 1
b. 0
c. 2
d. 3

Answer: b

|cos150sin150sin750cos750|[

= cos 15° cos 75° – sin 15° sin 75°

= cos (15 + 75)

= cos 90°

= 0

Question 25: A man takes a step forward with probability 0.4 and one step backward with probability 0.6 then the probability that at the end of eleven steps he is one step away from the starting point is


a. 11C5× (0.48)5
b. 11C6× (0.24)5
c. 11C5× (0.12)5
d. 11C6× (0.72)6

Answer: b

One step away means a step forward or a step backward either he took 6 forward steps and 5 backward steps or 6 backward steps and 5 forward steps

⇒required probability

= 11C6(0.4)6(0.6)5 + 11C5(0.4)5(0.6)6 = 11C5(0.4)5(0.6)5[0.4+0.6]= 11C5(0.24)5= 11C6× (0.24)5

Question 26:.

0π/4log(sinx+cosxcosx)dx


a. (π/4) log2
b. (π/2) log2
c. (π/8) log2
d. Log2

Answer: c

KCET 2015 Maths Paper Solved

Question 27: Area bounded by y = x3, y = 8 and x = 0 is _______


a. 2 sq. unit
b. 4 sq. unit
c. 12 sq. unit
d. 6 sq. unit

Answer: c

Consider the graph of y = x3 and y = 8 on the same plane.

KCET 2015 Maths Solved Questions

The required area is the shaded region.

A=0Ay1/3dy

A = (3/4)(16)

A=12 sq.units

Question 28: Let

a=i+2j+k
,
b=ij+k
and
c=i+jk
, a vector in the plane
a
and whose projection on is is ______________.


a. 3i + j – 3k
b. 4i + j – 4k
c. I+ j – 2k
d. 4i – j + 4k

Answer: d

Given vectors

a=i+2j+k
b=ij+k
c=i+jk

The vector r in the plane a and b is calculated as

r=a+λb
r=(1+λ)i^+2(1λ)i^+(1+λ)k^
——–(1)

Projection=rc|c|

KCET 2015 Maths Questions Solved

Question 29: The mean deviation from the data 3, 10, 10, 4, 7, 10, 5:


a. 3
b. 2
c. 3. 75
d. 2.75

Answer: d

Mean=3+4+5+7+10+10+107

= 49/7

=7

Median =

(7+12)th
observation

= 4th observation

Median = 7

Mean deviation =

17[|73|+|74|+|75|+|77|+|710|+|710|+|710|]

= (1/7) (4+3+2+0+3+3+3)

= 18/7 = 2.57

Question 30: The probability distribution of x is

X 0 1 2 3
P(x) 0.2 K K 2k

Find the value of k


a. 0.2
b. 0.3
c. 0.4
d. 0.1

Answer: d

P(x)=1

0.2 +k +k +2k =1

0.2 +4k =1

4k =0.8

K=0.2

Question 31: If the function g(x) is defined by

g(x)=x200200+x199199+x198198++x22+x+5


a. 1
b. 200
c. 100
d. 5

Answer: a

g(x)=x200200+x199199+x198198+.+x22+x+5

Differentiate w.r.t x

g(x)=200x199200+199x198199+198x197198+.+2x2+1

Practice Questions Solved of KCET 2015 Maths

Question 32: A box contains 6 red marbles numbers from 1 through 6 and 4 white marbles 12 through 15 Find the probability that a marble drawn ‘at random’ is white and odd numbered.


a. 5
b. 1/5
c. 6
d. 1/6

Answer: b

The total number of marbles are n(S) = 6 + 4 = 10

The number of marbles that are white and odd numbered is n(E) = 2

Probability=n(E)n(S)=210=15

Question 33:

limx01cosxx2
is ______________.


a. 2
b. 3
c. (1/2)
d. (1/3)

Answer: c

limx01cosxx2
(
00form
)

Using L’ Hospital rule

limx0sinx2x
12limx0sinx2x

= (1/2)(1)

= ½

Question 34:

f(x)={3x8 if x52k if x>5
is continuous, find k.


a. 2/7
b. 3/7
c. 4/7
d. 7/2

Answer: d

Practice Questions Solved of KCET 2015 Maths

Question 35: If f(x) = 2x2, find

f(3.8)f(4)3.84
Choose the correct option:


a. 1.56
b. 156
c. 15.6
d. 0.156

Answer: c

f(3.8)f(4)3.84=2(3.8)22(4)23.84

= (28.88 -32)/-0.2

= -3.12/-0.2

= 15.6

Question 36: If x = ct and y =c/t , find dy/dx at t = 2.


a. 1/4
b. 4
c. -1/4
d.0

Answer: c

x=ct

Differentiate w.r.t t

dxdt=c
———-(1)

And

y=ct

Differentiate w.r.t t

dydt=ct2
——(2)

Divide equation (2) by (1)

 KCET 2015 Maths Practice Questions Solved

Question 37: A balloon which always remains spherical is being inflated by pumping in 10 cubic centimeters of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cms


a. (1/90 π) cm/sec
b. (1/9 π) cm/sec
c. (1/30 π) cm/sec
d. (1/π) cm/sec

Answer: a

The rate of pumping the gas in the balloon is (dv/dt) = 10cm3/sec

The volume of the spherical balloon is given by v= (4/3) πr3 differentiate w.r.t r

(dv/dr) = (4/3) π(3r2)

= 4 πr2

dvdr|r15=4π(15)2=900π

Now,

dvdt=dvdr×drdt
10=900π×(drdt)
drdt=190πcm/sec

Question 38:

sin2x1+cosxdx


a. x + sinx + C
b. x – sinx + C
c. Sin x + C
d. Cos x + C

Answer: b

I=sin2x1+cosxdx
I=(1cos2x)1+cosxdx
I=(1cosx)(1+cosx)(1+cosx)dx
I=(1cosx)dx
I=xsinx+c

Question 39:

ex[1+sinx1+cosx]dx


a.

extan(x2)+C

b.
tan(x2)+C

c.
ex+C

d.
exsinx+C

Answer: d

KCET 2015 Maths Paper Answered

Question 40: If 1, w, w2 are three cube roots of unity, then (1–w + w2) (1 + w – w2) is __________


a.1
b.2
c. 3
d. 4

Answer: d

If 1, w, w2 are three cube roots of unity,

then 1 + w + w2 = 0 ……..(1)

Hence

(1-w + w2) (1 + w – w2) = (1 + w + w2 – 2w) (1+ w + w2 – 2w2)

= (0 – 2 w) (0 – 2w2)

{from eq. (1)}

= ( – 2 w) ( – 2w2)

= 4w3

= 4(1)

= 4

Question 41: Solve for x

tan1(1x1+x)=12tan1x,x>0


a. √3
b. 1
c. –1
d. 1/√3

Answer: d

tan1(1x1+x)=12tan1x
tan1(1)tan1x=12tan1xtan1x+12tan1x=tan1(1)
32tan1x=tan1(1)32tan1x=π4
tan1x=π6
x=tanπ6
x=13

Question 42: The system of linear equation x + y + z = 6, x + 2y + 3z = 10 and x + 2y + az = 6 has no solutions when __________


a. a = 2, b ≠ 3
b. a = 3, b ≠ 10
c. b = 2, a = 3
d. b = 3, a ≠ 3

Answer: b

Consider the given system of equations

x + y + z = 6 ……….(1)

x + 2y + 3z = 10 ……….(2)

x + 2y + az = 6 ……….(3)

Since condition of no solution, Δ=0

So,

|11112312a|=0

⇒ 1(2a-6)-1(a-3)+1(2-2)=0

⇒ 2a -6-a+3 =0

⇒ a=3

Now, b ≠ 10 then equations (2) and (3) will become identical, which will have infinite solutions.

The condition is satisfied for the option a = 3 and b ≠ 10.

Question 43: The value of tan (10) + tan (890) is ___________


a. 1/sin 10
b. 2/sin 20
c. 2/sin 10
d. 2/sin 20

Answer: b

⇒ tan (10) + tan (890)

⇒ tan (10) + tan (900-10)

⇒ tan (10) + cot (10) =

sin10cos10+cos10sin10
=sin210+cos210sin(10)cos(10)=1sin(10)cos(10)
=22sin(10)cos(10)=2sin(20)

Question 44:

(x+1)2x3+x=Ax+Bx+Cx2+1
, then cosec-1 (1/A) + cot-1(1/B) +sec-1C=___________


a. 5π/6
b. 0
c. 5π/6
d. π/2

Answer: b

Consider the expression

cosec11A+cot11B+sec1c

Also,

x2+2x+1x(x2+1)=Ax+Bx+Cx2+1
1x+2x2+1=Ax+Bx+Cx2+1

Compare the like terms of the equation

A = 1

B = 0

C = 2

Value of A, B, C put in equation (1)

cosec1(11)+cot1(10)+sec1(2)π2+cot1()+π3

= (5 π/6) + 0 = 5 π/6

Question 45: The remainder obtained when 1! + 2! + 3! + ……+ 11! Is divided by 12 is ________


a. 9
b. 8
c. 7
d. 6

Answer: b

Given:1! 2!+3!+4!+—– +11!

=(1!+2!+3!)+(4!+5!+6!+—–+11!)

=(1+2+6) + (4!+5!+6!+—-+11!)

=9+(4!+5!+6!+—-+11!)

4!, 5!, 6! —– 11! Are divisible by 12 so, when you will divide given expression by 12 the remainder be 9.

Question 46: If α ≤2sin–1 x + cos–1 x ≤ β, then


a. α = – π/2 , β = π/2
b. α = – π/2 , β = 3π/2
c. α = 0, β = π
d. α = 0, β =2 π

Answer: c

KCET 2015 Mathematics Solved

Question 47: If A =

[0110]
, then A2 equal to _________.


a.

[0110]

b.
[1010]

c.
[1001]

d.
[0101]

Answer: c

A =

[0110]

A2=A.A

=[0110][0110]

=

[0+10+00+01+0]

=

[1001]

Question 48: The function f(x) = [x], where [x] denotes greatest integer function is continuous at _________


a. 4
b. –2
c. 1
d. 1.5

Answer: d

Consider the function

F(x) = [x]

Here, [x] denotes the greatest integer function.

[x] is always continuous at non integer value of x.

Thus, the function will be continuous at x=1.5

Question 49: If

y=log(1x21+x2)
, then (dy/dx) is equal to _________


a.

4x1x4

b. Stem height
c.
14x4

d.
4x31x4

Answer: a

Y=log(1x21+x2)

using log property

y=log(1-x2)-log(1+x2)

differentiate w.r.t x

dydx=1(1x2)(2x)1(1+x2)(2x)
dydx=(2x)[1(1x2)+1(1+x2)]
dydx=(2x)[1+x2+1x2(1x2)(1+x2)]
{since,(A-B)(A+B)= A2-B2}

= -4x/(1-x4)

Question 50: The two curves x3 –3xy2 + 2 = 0 and 3x2y – y3 = 2


a. Touch each other
b. Cut at right angle
c. Cut at angle π/3
d. Cut at angle π/4

Answer: B

First curve equation

x3-3xy2+2=0

Differentiate w.r.t. x

3x2-3(y2+2xy y’)=0

3x2-3y2-6xy y’)=0

y’=

3x23y26xy=m1

second curve equation

3x2y-y3= 2

Differentiate w.r.t x

⇒ 3(2xy + x2y’)-3y2y’= 0

⇒ 6xy + 3x2y’-3y2y’= 0

y1=6xy3x23y2=m2

Calculate the product of slope

m1×m2=(6xy3x23y2)(3x23y26xy)

m1 × m2 = -1

The product is -1. So the curves intersect at each other at right angle.

Question 51: If x is real, then the minimum value of x2 – 8x + 17 is ___________


a. 1
b. 2
c. 3
d. 4

Answer: a

Let

y=x2-8x+17

y=(x2-8x+16)+1

y=(x-4)2+1

so, y≥1 for all real values of x as (x-4)2≥0

Thus, the minimum value of y is 1

Question 52:

π2π4dx1+cos2x
is equal to


a. 2
b.1
c. 4
d. 0

Answer: a

Let

I=π4π4dx1+cos2x
I=π4π4dx1+2cos2x1
I=π4π412sec2x

Let

f(x) = sec2x

f(-x)=sec2(-x)

f(-x)=sec2x

f(-x)=f(x)

so f(x) is an even function

Therefore,

I=20π412sec2xdx
I=0π4sec2xdx
I=[tanx]0π/4
I=tanπ4tan0

I = 1-0

I = 1

Question 53: The order of differential equation of all circles of given radius ‘a’ is _________


a. 4
b. 2
c. 1
d. 3

Answer: b

Let the centre of circle be (h,k) and radius be r.

The equation of circle can now be written as,

(x-h)2+(y-k)2 = x2 …..(1)

Hence the differential equation is of order 2.

Question 54: The solution of differential equation

xdydx+2y=x2
is


a.

y=x2+c4x2

b.
y=x24

c.
y=x4+cx2

d.
y=x4+c4x2

Answer: d

xdydx+2y=x2
dydx+2xy=x

The above equation is a linear equation in terms of y.

Therefore,

I.F =

e2xdx
=e2logx
=elogx2

=x2

The required solution is

y.x2=(x.x2)dx+c1
yx2=x44+c1
y=x4+4c14x2
y=x4+c4x2

Question 55: If sin x + sin y =(1/2) and cos x + cos y = 1, then tan (x + y) = ___________


a. 8/3
b. -3/4
c. -8/3
d. 4/3

Answer: d

KCET 2015 Mathematics Solved

KCET 2015 Mathematics Solved Paper

Question 56: If

A=[α22α]
and
|A3|=27
, then α =___________


a. ±1
b. ±2
c. ±√7
d. ±√5

Answer: c

Given

A=[α22α]
|A|=|α22α|
|A|=α24

Now,

|A3|=27
(α24)3=33
(α24)=3
α2=7

So,

α=±7

Question 57: If

P=|x11x|
and
|x111x111x|
, then dQ/dx = =___________


a. 3p +1
b. 1–3p
c. –3p
d. 3p

Answer: d

P=|x11x|
|P|=x21

And

θ=|x111x111x|

θ= x(x2-1)-1(x-1)+1(1-x)

θ= x3-x-x+1+1-x

θ= x3-3x+2


d.fferentiate w.r.t x

dθdx=3x23

= 3(x2-1)

= 3P

Question 58: A line passes through (2, 2) and is perpendicular in the line 3x + y = 3 its y-intercept is ____


a. 1/3
b. 2/3
c. 4/3
d. 1

Answer: c

The equation of line is 3x+y = 3

slope of the line ⇒

3+dydx=0
dydx=3=m

slope of the perpendicular line ⇒

1m=13=13

The equation of line passing through (2,2) and perpendicular to given line

⇒ (y-2) =(1/3)(x-2)

3y-x = 4

3y4x4=1

Thus, the y-intercept is (4/3)

Question 59:Solved Paper of KCET 2015 Mathematics


a. One-one
b. onto
c. bijective
d. f is not defined

Answer: d

c.nsider the function

Solution Paper of KCET 2015 Mathematics

substitute 0 for x in the above expression

f(x) = 1/0

= undefined

Thus, the function f(x) is not defined

Question 60: The solution set of the inequation

x2+6x7|x+4|<0
is ___________


a. (-7,1)
b. (-7,-4)
c.

(7,4)(4,1)

d.
(7,4)(4,1)

Answer: c

x2+6x7|x+4|<0

for the above expression

|x+4|>0

a.d

x2+6x-7<0 { x ≠ -4 }

(x+7)(x-1)<0

Diagram

Solution Question Paper of KCET 2015 Mathematics

Video Lessons – KCET 2015 – Maths

14,588
75,202
83,881
33,548

KCET 2015 Maths Question Paper

Download PDF Download PDF

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*