Lagrange Interpolation Formula

Lagrange polynomials are used for polynomial interpolation. For a given set of distinct points

xj
and numbers
yj
. Lagrange’s interpolation is also an
nth
degree polynomial approximation to f(x).

Find the Lagrange Interpolation Formula given below,

lagrange

Solved Example

Question: 

Find the value of y at x = 0 given some set of values (-2, 5), (1, 7), (3, 11), (7, 34).

Solution:

Given the known values are,

x = 0 ; x0 = -2 ; x1 = 1 ; x= 3 ; x3 = 7 ; y0 = 5 ; y1 = 7 ; y2 = 11 ; y3 = 34

Using the interpolation formula,

y =

(x−x1)(x−x2)…..(x−xn)(x0−x1)(x0−x2)…..(x0−xn)
y0
+
(x−x0)(x−x2)…..(x−xn)(x1−x0)(x1−x2)…..(x1−xn)
y1
+ …. +
(x−x1)(x−x1)…..(x−xn−1)(xn−x0)(x0−x1)…..(xn−xn−1)
yn

y =

(0−1)(0−3)(0−7)(−2−1)(−2−3)(−2−7)×5
 +
(0+2)(0−3)(0−7)(1+2)(1−3)(1−7)×7
 +
(0+2)(0−1)(0−7)(3+2)(3−1)(3−7)×11
  +
(0+2)(0−1)(0−3)(7+2)(7−1)(7−3)×34

y =

2127
+
496
+
−7720
+
5154

y =

1087180

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*