Enter your keyword

Logarithm Formula




Logarithms are the opposite phenomena of exponential like subtraction is the inverse of addition process, and division is the opposite phenomena of multiplication. Logs “undo” exponentials.

Trivial Identities

\[\large \log _{b} (1) = 0; \; because \; b^{0}=1; \; b> 0\]

\[\large \log _{b} (b) = 1; \; because \; b^{1}=b\]

Basic Logarithm Formulas

\[\large \log _{b} (xy) = \log _{b}(x) + \log _{b}(y)\]

\[\large \log _{b}\left ( \frac{x}{y} \right ) = \log _{b}(x) – \log _{b}(y)\]

\[\large \log_{b}(x^{d})= d \log_{b}(x)\]

\[\large \log_{b}(\sqrt[y]{x})= \frac{\log_{b}(x)}{y}\]

\[\large c\log_{b}(x)+d\log_{b}(y)= \log_{b}(x^{c}y^{d})\]

Changing the Base

\[\large \log_{b}a = \frac{\log_{d}(a)}{\log_{d}(b)}\]

Addition & Subtraction

\[\large \log_{b} (a+c) = \log_{b}a + \log_{b}\left ( 1 + \frac{c}{a} \right )\]

\[\large \log_{b} (a-c) = \log_{b}a + \log_{b}\left ( 1 – \frac{c}{a} \right )\]


\[\large x^{\frac{\log(\log(x))}{\log(x)}} \; = \; \log(x)\]



More topics in Logarithm Formula
Natural Log Formula Change of Base Formula
Exponential Growth Formula
Related Links
Chi Square FormulaRegular Square Pyramid Formula
Parallelogram FormulaEffect Size Formula
Celsius FormulaAngular Acceleration Formula
Area Of A Rectangle FormulaDe Broglie Wavelength Formula
Magnetism FormulaArea Of A Sector Of A Circle Formula
Byjus Formulas