Enter your keyword

Logarithm Formula

 

 

 

Logarithms are the opposite phenomena of exponential like subtraction is the inverse of addition process, and division is the opposite phenomena of multiplication. Logs “undo” exponentials.

Trivial Identities

\[\large \log _{b} (1) = 0; \; because \; b^{0}=1; \; b> 0\]

\[\large \log _{b} (b) = 1; \; because \; b^{1}=b\]

Basic Logarithm Formulas

\[\large \log _{b} (xy) = \log _{b}(x) + \log _{b}(y)\]

\[\large \log _{b}\left ( \frac{x}{y} \right ) = \log _{b}(x) – \log _{b}(y)\]

\[\large \log_{b}(x^{d})= d \log_{b}(x)\]

\[\large \log_{b}(\sqrt[y]{x})= \frac{\log_{b}(x)}{y}\]

\[\large c\log_{b}(x)+d\log_{b}(y)= \log_{b}(x^{c}y^{d})\]

Changing the Base

\[\large \log_{b}a = \frac{\log_{d}(a)}{\log_{d}(b)}\]

Addition & Subtraction

\[\large \log_{b} (a+c) = \log_{b}a + \log_{b}\left ( 1 + \frac{c}{a} \right )\]

\[\large \log_{b} (a-c) = \log_{b}a + \log_{b}\left ( 1 – \frac{c}{a} \right )\]

Exponents

\[\large x^{\frac{\log(\log(x))}{\log(x)}} \; = \; \log(x)\]

 

 

More topics in Logarithm Formula
Natural Log Formula Change of Base Formula
Exponential Growth Formula