The equation of the circle which touches both the axis and whose radius is a, is
1) x2 + y2 – 2ax – 2ay + a2 = 0 2) x2 + y2 + ax + ay... View Article
1) x2 + y2 – 2ax – 2ay + a2 = 0 2) x2 + y2 + ax + ay... View Article
1) x2 + y2 + x + y – 8 = 0 2) x2 + y2 – x – y... View Article
1) 16 2) 4√3 3) 48 4) None of these Solution: (2) 4√3 \(\begin{array}{l}\mathrm{PA} =\text { length of the tangent... View Article
1) 1 2) 2 3) 3 4) 4 Solution: (2) 2 \(\begin{array}{l}\text { Since the point (7,-4) lies outside }... View Article
1) x2 + y2 + 2x – 1 = 0 2) x2 + y2 – 2x – 1 = 0... View Article
1) (25, 32) 2) (9, 32) 3) (32, + ∞) 4) None of these Solution: (1) (25, 32) \(\begin{array}{l}\text \... View Article
1) (2, 29 / 10) 2) (29 / 10, 2) 3) (- 2, 29 / 10) 4) none of these... View Article
1) p ∈ (–1, 3) 2) p ∈ (– ∞, – 1) ∪ (3, ∞) 3) p ∈ (– 4,... View Article
1) q (p + q) 2) p + q 3) p (p + q) 4) p (p – q) Solution:... View Article
1) 4 (x2 + y2) = g2 + f2 2) 4 (x2 + y2) + 8gx + 8fy = (1... View Article
1) 2√11 2) 5√5 3) 13 4) None of these Solution: (1) 2√11 \(\begin{array}{l}\begin{array}{l} \text { The centre } \mathrm{C}... View Article
1) (4, –5), (–2, 3) 2) (4, –3), (–2, 5) 3) (4, 5), (–2, –3) 4) None of these Solution:... View Article
1) x2 + y2 – 2x – 2y – 3 = 0 2) x2 + y2 + 2x – 2y... View Article
1) x2 + y2 – 5x – 3y + 8 = 0 2) x2 + y2 – 3x – 5y... View Article
1) x2 + y2 = 3 2) x2 – y2 = 4 3) x2 + y2 = 2 4) x2... View Article
1) 10 2) 2√5 3) 6 4) 4 Solution: (2) 2√5 x + y = 6 and x + 2y... View Article
1) 1 / 2 2) 1 / 3 3) 2 4) 3 Solution: (1) 1 / 2 \(\begin{array}{l}\text {Make homogeneous}... View Article
1) 0 2) 1 3) 3 4) 4 Solution: (2) 1 \(\begin{array}{l}\text { The given circles have centre at }... View Article
1) 4 2) 6 3) 8 4) 10 Solution: (1) 4 Centre and radius of the circle x2 + y2... View Article
1) x2 = 16y 2) y2 = 4x 3) y2 = 16x 4) x2 = 4y Solution: (3) y2 =... View Article