Latest Posts

20C4 + 2 . 20C3 + 20C222C18 is equal to

1) 0 2) 1242 3) 7315 4) 6345 Solution: (1) 0 \(\begin{array}{l}20_{c_{4}}+220_{c_{3}}+20_{c_{2}}-22_{c_{18}} \\ =20_{c_{4}}+20_{c_{3}}+20_{c_{3}}+20_{c_{2}}-22_{c_{18}} \\ =21_{c_{4}}+21_{c_{3}}-22_{c_{18}} \\ =22_{c_{4}}-22_{c_{18}} \\ =0\end{array}... View Article

The value of 50C4 + ∑r=16 56-rC3 is

1) 56C4 2) 56C3 3) 55C3 4) 55C4 Solution: (1) 56C4 \(\begin{array}{l}\begin{array}{l} 50_{c_{4}}+\sum_{r=1}^{6} 56-r_{C_{3}}=50_{c_{4}}+55_{c_{3}}+54_{c_{3}}+53_{c_{3}}+\cdots 50_{c_{3}} \\ \Rightarrow 50_{C_{3}}+50_{c_{4}}+51_{C_{3}}+52_{c_{3}}+\cdots 55_{C_{3}} \\... View Article

If n = 5, then (nC0)2 + (nC1)2 + (nC2)2 + …+ (nC5)2

1) 250 2) 254 3) 245 4) 252 5) 258 Solution: (4) 252 \(\begin{array}{l}\begin{array}{l} \left(5 c_{0}\right)^{2}+\left(5_{c_{1}}\right)^{2}+\left(5_{c_{2}}\right)^{2}+\cdots+\left(5_{c_{5}}\right)^{2} \\ 1+5^{2}+10^{2}+5^{2}+1^{2}=252 \\ \therefore\left(5_{c_{0}}\right)^{2}+\left(5_{c_{1}}\right)^{2}+\left(5_{c_{2}}\right)^{2}+\cdots+\left(5_{c_{5}}\right)^{2}\\=252... View Article