If [latex]x\begin{bmatrix} -3\\ 4 \end{bmatrix}+y\begin{bmatrix} 4\\ 3 \end{bmatrix}=\begin{bmatrix} 10\\ -5 \end{bmatrix}[/latex], then
1) x = – 2, y = 1 2) x = – 9, y = 10 3) x = 22,... View Article
1) x = – 2, y = 1 2) x = – 9, y = 10 3) x = 22,... View Article
1) 17 2) 25 3) 3 4) 12 Solution: (1) 17 \(\begin{array}{l}\begin{array}{l} A=\left[\begin{array}{ccc} 1 & -5 & 7 \\ 0... View Article
1) symmetric matrix 2) a diagonal matrix 3) a skew-symmetric 4) None of the above Solution: (1) symmetric matrix AT... View Article
1) 4A – 3I 2) 3A – 4I 3) A – I 4) A + I Solution: (1) 4A –... View Article
1) a symmetric matrix 2) a skew – symmertic matrix 3) a unit matrix 4) an elementary matrix Solution: (2)... View Article
1) CB + A’ 2) BAC 3) C(A + B’)’ 4) C(A + B’ ) Solution: (4) C(A + B’... View Article
1) 0 2) 2/3 3) 5/4 4) – (4/5) Solution: (3) 5/4 \(\begin{array}{l}\begin{aligned} &\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll}... View Article
1) 0 2) 1 3) 2 4) infinite Solution: (2) 1 For infinitely many solutions, (k + 1) / k... View Article
1) 2I3 2) 3I3 3) 4I3 4) 5I3 Solution: (4) 5I3 \(\begin{array}{l}\begin{array}{l} A=\left[\begin{array}{lll} 1 & 2 & 2 \\ 2... View Article
1) unit matrix 2) null matrix 3) diagonal matrix 4) None of these Solution: (2) null matrix \(\begin{array}{l}\begin{array}{l}E(\theta)=\left[\begin{array}{cc}\cos ^{2} \theta... View Article
1) a = 1 = 2b 2) a = b 3) a = b2 4) ab = 1 Solution: (4)... View Article
1) \(\begin{array}{l}\begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}\end{array} \) 2) \(\begin{array}{l}\begin{bmatrix} 0 &0 \\ 0&0 \end{bmatrix}\end{array} \) 3) \(\begin{array}{l}\begin{bmatrix} 0 &1... View Article
1) ω2 A 2) ωA 3) A 4) 0 Solution: (2) ωA \(\begin{array}{l}\begin{array}{l} A=\left[\begin{array}{cc} w & 0 \\ 0 &... View Article
1) a symmetric matrix 2) a skew-symmetric matrix 3) a null matrix 4) the identity matrix Solution: (2) a skew-symmetric... View Article
1) A + AT is symmetric 2) AAT is skew-symmetric 3) AT + A is skew-symmetric 4) AT is skew-symmetric... View Article
1) 3ω 2) 3ω (ω – 1) 3) 3ω2 4) 3ω (1 – ω) Solution: (2) 3ω (ω – 1)... View Article
1) –1 2) 0 3) 1 4) 2 Solution: (2) 0 \(\begin{array}{l}\begin{array}{l} A=\left[\begin{array}{ll} x & 1 \\ 1 & 0... View Article
1) AT BT 2) ABT 3) BAT 4) BT AT Solution: (4) BT AT AT and BT are transpose matrices... View Article
1) \(\begin{array}{l}\begin{bmatrix} 1 &1 \\ 2&2 \end{bmatrix}\end{array} \) 2) \(\begin{array}{l}\begin{bmatrix} 1 &2 \\ 1&2 \end{bmatrix}\end{array} \) 3) \(\begin{array}{l}\begin{bmatrix} 1 &2... View Article
1) \(\begin{array}{l}\begin{bmatrix} 17 &0 \\ 4&-2 \end{bmatrix}\end{array} \) 2) \(\begin{array}{l}\begin{bmatrix} 4 &0 \\ 0&4 \end{bmatrix}\end{array} \) 3) \(\begin{array}{l}\begin{bmatrix} 17 &4... View Article