wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

0πx tan xsec x+tan x dx

Open in App
Solution

Let I=0πx tanxsecx +tanxdx ...(i) =0ππ-x tanπ-xsecπ-x +tanπ-xdx =0ππ-x tanxsecx +tanxdx ...(ii)Adding (i) and (ii) we get2I=0ππ tanxsecx +tanxdx =π0πsinx1+sinxdx =π0π1+sinx-11+sinxdx =π0π1-11+sinxdx =πx0π-π0π11+2tanx21+tan2x2dx =π2-π0πsec2x21+tan2x2+2tanx2dx =π2-π0πsec2x21+tanx22dx =π2+π21+tanx20π =π2+π0-2 =π2-2π =ππ-2Hence I=π2π-2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon