Byju's Answer
Standard XII
Mathematics
Improper Integrals
∫ 0 asin- 1 x...
Question
∫
0
a
sin
-
1
x
a
+
x
d
x
Open in App
Solution
Let
,
I
=
∫
0
a
sin
-
1
x
a
+
x
d
x
Let
,
x
=
a
tan
2
θ
⇒
θ
=
tan
-
1
x
a
When
,
x
→
x
;
θ
→
0
a
n
d
x
→
a
;
θ
→
π
4
and
d
x
=
2
a
tan
θ
s
e
c
2
θ
d
θ
Then
,
I
=
∫
0
π
4
sin
-
1
a
tan
2
θ
a
+
a
tan
2
θ
2
a
tan
θ
s
e
c
2
θ
d
θ
⇒
I
=
2
a
∫
0
π
4
sin
-
1
sin
θ
tan
θ
s
e
c
2
θ
d
θ
⇒
I
=
2
a
∫
0
π
4
θ
tan
θ
s
e
c
2
θ
d
θ
Let
,
tan
θ
=
t
⇒
θ
=
tan
-
1
t
⇒
s
e
c
2
θ
d
θ
=
d
t
when
,
θ
→
0
;
t
→
0
a
n
d
θ
→
π
4
;
t
→
1
Then
,
I
=
2
a
∫
0
1
tan
-
1
t
t
d
t
=
2
a
∫
0
1
tan
-
1
t
t
d
t
=
2
a
tan
-
1
t
t
2
2
0
1
-
2
a
2
∫
0
1
t
2
1
+
t
2
d
t
=
2
a
π
4
×
1
2
-
0
-
a
∫
0
1
1
-
1
1
+
t
2
d
t
=
2
a
π
8
-
a
t
-
tan
-
1
t
0
1
=
πa
4
-
a
1
-
π
4
=
πa
4
-
a
+
π
a
4
=
πa
2
-
a
=
a
π
2
-
1
Suggest Corrections
0
Similar questions
Q.
∫
sin
-
1
x
a
+
x
d
x
Q.
If x < 0, then find the value of
2
(
tan
−
1
1
x
+
tan
−
1
x
)