wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

12tanx2+14tanx4+...+12ntanx2n=12ncotx2n-cot x for all n ∈ N and 0<x<π2

Open in App
Solution

We need to prove 12tanx2+14tanx4+...+12ntanx2n=12ncotx2n-cot x for all n ∈ N and 0<x<π2 using mathematical induction.

For n = 1,

LHS = 12tanx2

and

RHS=12cotx2-cotx=12tanx2-1tanxRHS=12tanx2-12tanx21-tan2x2RHS=12tanx2-1-tan2x22 tanx2=1-1+tan2x22tanx2=tanx22

Therefore, the given relation is true for n = 1.

Now, let the given relation be true for n = k.

We need to prove that the given relation is true for n = k + 1.

12tanx2+14tanx4+...+12ktanx2k=12kcotx2k-cot x

Now,

12tanx2+14tanx4+...+12ktanx2k+12k+1tanx2k+1=12kcotx2k-cot x+12k+1tanx2k+1

Let:

L=12kcotx2k-cot x+12k+1tanx2k+1.

L=12kcotx2k+12k+1tanx2k+1-cot xL=12ktanx2k+12k+1tanx2k+1-cot xL=12ktan2x2k+1+12k+1tanx2k+1-cot xL=12k×2tanx2k+11-tan2x2k+1+12k+1tanx2k+1-cot xL=1-tan2x2k+12k+1tanx2k+1+12k+1tanx2k+1-cot x

L=1-tan2x2k+1+tan2x2k+12k+1tanx2k+1-cot x=12k+1cotx2k+1-cot x
Now,

12tanx2+14tanx4+...+12ktanx2k+12k+1tanx2k+1=12k+1cotx2k+1-cot x

Thus, 12tanx2+14tanx4+...+12ntanx2n=12ncotx2n-cot x for all n ∈ N and 0<x<π2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon