1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
∫ 1 tan -1 x ...
Question
∫
1
tan
-
1
x
.
1
+
x
2
d
x
Open in App
Solution
∫
d
x
tan
-
1
x
1
+
x
2
Let
tan
-
1
x
=
t
⇒
1
1
+
x
2
=
d
t
d
x
⇒
1
1
+
x
2
d
x
=
d
t
Now
,
∫
d
x
tan
-
1
x
1
+
x
2
=
∫
d
t
t
=
∫
t
-
1
2
d
t
=
t
-
1
2
+
1
-
1
2
+
1
+
C
=
2
t
+
C
=
2
tan
-
1
x
+
C
Suggest Corrections
0
Similar questions
Q.
Solve:
∫
x
2
−
1
(
x
4
+
3
x
2
+
1
)
tan
−
1
(
x
+
1
x
)
d
x
Q.
Show that
∫
(
x
2
−
1
)
d
x
(
x
4
+
3
x
2
+
1
)
tan
−
1
(
x
+
1
x
)
=
1
2
log
tan
−
1
(
x
+
1
x
)
.
Q.
∫
tan
-
1
x
d
x
i
s
e
q
u
a
l
t
o
(
a
)
(
x
+
1
)
tan
-
1
x
-
x
+
C
(
b
)
x
tan
-
1
x
-
x
+
C
(
c
)
x
-
x
tan
-
1
x
+
C
(
d
)
x
-
(
x
+
1
)
tan
-
1
x
+
C
Q.
equals
A.
x
tan
−1
(
x
+ 1) + C
B. tan
− 1
(
x
+ 1) + C
C. (
x
+ 1) tan
−1
x
+ C
D. tan
−1
x
+ C