The integral is given as,
I= ∫ dx x( x 2 +1 )
Use partial fraction rule to simplify fraction.
1 x( x 2 +1 ) = A x + Bx+C ( x 2 +1 ) 1=A( x 2 +1 )+( Bx+C )x
Substitute x=0then,
A=1
Equate the coefficients of x 2 ,xand constant term.
A+B=0 C=0
So, B=−1
Substitute the values and integrate.
I= ∫ dx x( x 2 +1 ) I= ∫ dx x + ∫ −xdx ( x 2 +1 ) I=log| x |− 1 2 ∫ 2xdx ( x 2 +1 ) I=log| x |− 1 2 log| x 2 +1 |+C
Thus, the correct option is (A).