CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

2 perpendicular chords AB and CD of a circle intersect at O (inside the circle). AB is bisected at O. If AO = 4 units and OD = 6 units. Find circumradius of $$\displaystyle \bigtriangleup ACO $$.


A
13
loader
B
2133
loader
C
152
loader
D
2154
loader

Solution

The correct option is D $$\displaystyle \frac{2\sqrt{13}}{3}$$
$$\angle BDO=\angle CAO=A$$ as angles are made by a chord of circle on its surface are equal.
By $$AA;\Delta DOB\sim \Delta AOC$$
Therefore sides will be in equal proportion.
$$\dfrac{OA}{OC}=\dfrac{OD}{OB}$$
$$\implies\dfrac{4}{OC}=\dfrac{6}{4}\implies OC=\dfrac{16}{6}=\dfrac{8}{3}$$ units
$$AC=\sqrt { { 4 }^{ 2 }+\left( \dfrac { 8 }{ 3 }  \right) ^{ 2 } } =\sqrt { 16+\dfrac { 64 }{ 9 } = } \sqrt { \dfrac { 144+64 }{ 9 } = } \sqrt { \dfrac { 208 }{ 9 }  } =\dfrac { 4\sqrt { 13 }  }{ 3 } $$ units
Therefore circumradius of $$\Delta ACO=\dfrac { \left( OA \right) .\left( OC \right) .\left( AC \right)  }{ 4\Delta  } =\dfrac { 4\times \dfrac { 8 }{ 3 } \times \dfrac { 4\sqrt { 13 }  }{ 3 }  }{ 4\times \dfrac { 1 }{ 2 } \times 4\times \dfrac { 8 }{ 3 }  } =\dfrac { 2\sqrt { 13 }  }{ 3 } $$
Hence,circumradius of $$\Delta ACO=\dfrac { 2\sqrt { 13 }  }{ 3 } $$

891805_299211_ans_a8813e40ba0c4a669bdb96616f1d446f.JPG

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More



footer-image