I= ∫ dx cos 2 x ( 1−tanx ) 2 I= ∫ sec 2 x ( 1−tanx ) 2 dx ( 1 )
Put ( 1−tanx )=t
Differentiating both sides,
− sec 2 xdx=dt
Substitute the values in equation ( 1 )
I= ∫ − dt t 2 I=− ∫ t −2 dt I=−[ t −2+1 −2+1 ]+C I=− −1 t +C I= 1 t +C ( 2 )
Substitute the value of t in equation ( 2 ) , then
I= 1 ( 1−tanx ) +C
Thus, the integral is given as I= 1 ( 1−tanx ) +C .