The function is given as,
y=sin2x−4 e 3x
We have to calculate the integral or anti-derivative of y.
Calculate the derivative of cos2x.
d dx ( cos2x )=( sin2x )( −2 ) −1 2 [ ( d dx ( cos2x ) ) ]=( sin2x ) ( sin2x )= [ d dx ( −1 2 cos2x ) ]
Calculate the derivative of 4 e 3x .
d dx ( 4 e 3x )= ( e 3x )( 3 )( 4 ) 4 3 [ ( d dx ( e 3x ) ) ]=( 4 e 3x ) ( 4 e 3x )= [ 4 3 d dx ( e 3x ) ]
Thus, the anti-derivative of ( sin2x−4 e 3x )is [ ( −1 2 cos2x )+( −4 3 e 3x ) ].