The correct option is
B x2+y2−9x−9y+36=0Let, △ABC has the vertices A(6,0),B(0,6),C(7,7) and AB,BC,CA are the sides with distances c,a,b respectively.
∴ Using distance formula, a=|BC|=√(7−0)2+(7−6)2=5√2b=|CA|=√(7−6)2+(7−0)2=5√2c=|AB|=√(6−0)2+(0−6)2=6√2
Now, assuming the In-centre of the circle as O we get,
O=(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)
=(5√2(6)+5√2(0)+6√2(7)5√2+5√2+6√2,5√2(0)+5√2(6)+6√2(7)5√2+5√2+6√2)
⇒O=(92,92)
and,
The inradius r is equal to the perpendicular distance from incenter to any of the sides
Equation of the line AB
y−0=6−00−6(x−6) [two−point form]
y=6−6(x−6)
y=−(x−6)
x+y−6=0
So the inradius is
r=|92+92−6|√1+1
-
r=|9−6|√2
r=|3|√2
∴ r=|3|√2
The equation of the incircle is
(x−92)2+(y−92)2=(|3|√2)2
x2+814−9x+y2+814−9y=92
x2+−9x+y2−9y+814+814−92=0
x2+y2−9x−9y+812−92=0
x2+y2−9x−9y+81−92=0
x2+y2−9x−9y+722=0
x2+y2−9x−9y+36=0