wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

7. x sim 'x

Open in App
Solution

The integral is given below as,

I= x sin 1 xdx

Use integration by parts. Consider sin 1 xas first function and xas second function.

I= x sin 1 xdx I= sin 1 x xdx ( d dx sin 1 x xdx ) dx

On integrating, we get

I= x 2 2 sin 1 x+ 1 2 x 2 1 x 2 dx = x 2 2 sin 1 x+ 1 2 ( 1 x 2 1 x 2 1 1 x 2 )dx = x 2 2 sin 1 x+ 1 2 [ 1 x 2 dx dx 1 x 2 ] I= x 2 2 sin 1 x+ 1 2 [ x 2 1 x 2 + 1 2 sin 1 x sin 1 x ]+C

By simplifying further, we get

I= x 2 2 sin 1 x+ 1 2 [ x 2 1 x 2 1 2 sin 1 x ]+C = x 2 2 sin 1 x 1 4 sin 1 x+ x 4 1 x 2 +C I= 1 4 ( 2 x 2 1 ) sin 1 x+ x 4 1 x 2 +C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon