Sandwich Theorem
Trending Questions
Q. limx→∞√x+sinxx−cosx=
- does not exist
Q. For αϵR (the set of all real numbers), a≠−1,
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
- 5
- 7
- −152
- −172
Q.
If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=
0
-1
1
does not exist
Q.
The value of limx→∞x+cos xx+sin xis
0
-1
1
2
Q.
The value of limx→0([100xsin x]+[99sin xx]), where [.] denotes the greatest integer function, is
199
197
198
Does not exist
Q.
The value of limx→∞x+cos xx+sin xis
-1
0
1
2
Q.
The value of limx→0([100xsin x]+[99sin xx]), where [.] denotes the greatest integer function, is
198
197
199
Does not exist
Q.
If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=
-1
1
0
does not exist
Q. limx→∞√x+sinxx−cosx=
- does not exist
Q. For αϵR (the set of all real numbers), a≠−1,
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160
- 5
- 7
- −152
- −172