Integration of Trigonometric Functions
Trending Questions
Q. ∫dxsin4x+cos4 x is equal to
- 1√2tan−1(1√2tan 2x)+C
- √2tan−1(1√2tan 2x)+C
- 1√2tan−1(1√2cot 2x)+C
- None of these
Q. If ∫cos 8x+1tan 2x−cot 2xdx=a cos 8x+C, then
- a=−116
- a=18
- a=116
- a=−18
Q. If Φ(x)=∫dxsin12x cos72x, then Φ(π4)−Φ(0)=
- 0
- 125
- 65
- 95
Q. ∫x+sin x1+cos xdx=
- −log|1+cos x|+C
- x cot(x2)+C
- log|1+cos x|+C
- x tan x2+C
Q. ∫(2+sec x)sec x(1+2sec x)2dx
- 2cosec x−cot x+C
- 12cosec x+cot x+C
- 12cosec x−cot x+C
- 2cosec x+cot x+C
Q. If ∫tanx1+tanx+tan2xdx=x−2√Atan−1(2tanx+1√A)+C, where C is arbitrary constant of integration, then the value of A is
Q.
∫12+3 sinxdx
Q. ∫14sin2x+9cos2x dx will be equal to -
- 13tan−1(2tan(x)3)+C
- 16tan−1(2tan(x)3)+C
- 16tan−1(2tan(x)6)+C
- 16tan−1(2tan(x)5)+C
Q.
If ∫α0dx1−cosαcosx=Asinα+B (α≠0) the values of A and B are
A=π2, B=0
A=π6, B=πsinα
A=π4, B=π4sinα
A=π, B=πsinα
Q. ∫dx4+5sin2xdx is equal to.
16tan−1(3cotx2)+C
16tan−1(3tanx2)+C
16cot−1(3cotx2)+C
16cot−1(3tanx2)+C