Product of Trigonometric Ratios in Terms of Their Sum
Trending Questions
Q.
If , then
Q.
The general solution of the differential equation is
Q.
The most general solutions of the equation are given by
None of these
Q. sinA+sin2A+sin4A+sin5AcosA+cos2A+cos4A+cos5A=
- tan2A
- cot3A
- tan3A
- tan4A
Q.
If , then
None of these
Q. If sin2A+sin2B=12 and cos2A+cos2B=32, then the value of |cos(A−B)| is
- √58
- √38
- 58
- 38
Q. The value of tan20∘tan80∘cot50∘ is
- √3
- 1√3
- √34
- 12√3
Q. The value of the expression sin2xcos3x+sin3xcos8x+sin5xcos16xsin2xsin3x+sin3xsin8x+sin5xsin16x is
- cot11x
- tan11x
- cot10x
- tan10x
Q. If cos−1√p+cos−1√1−p+cos−1√1−q=3π4, then the value of q is
- 1
- 1√2
- 13
- 12
Q. If sin(A+B)sin(A−B)=x+yx−y, then tanAtanB is equal to
- xy
- yx
- −yx
- −xy
Q. The interval(s) of x which satisfy the inequality (1−3x)7(1+5x)4(x+5)6(x2−1)(x−6)3(1−2x)4>0 is/are
- (−5, −1)
- (−15, 13)
- (1, 6)
- (−∞, −5)
Q. 2 sin2 β+4 cos(α+β) sin α sin β+cos 2(α+β)=
- sin 2α
- cos 2β
- cos 2α
- sin 2β
Q. Let f(x)=1x, g(x)=14x2−1 and h(x)=5xx+2 be three functions and k(x)=h(g(f(x))). If domain and range of k(x) are R−{a1, a2, a3, …, an} and R−A respectively, where R is the set of real numbers, then
- n+n∑i=1ai=5
- n+n∑i=1ai=10
- Number of integers in set A is 5
- Number of integers in set A is 7
Q. If sin θ+sin ϕ=a and cos θ+cos ϕ=b, (a≠b, a≠0, b≠0) then -
- tan θ+tan ϕ=8ab(a2+b2)2+4b2
- cos θ.cos ϕ=(a2+b2)2−4a24(a2+b2)
- cos (θ+ϕ)=b2−a2b2+a2
- sin (θ+ϕ)=4ab(a2+b2)+2b2
Q.
If k=sinπ18.sin5π18.sin7π18 then the numerical value of k is
14
18
116
None of these
Q. If sinθ+sinϕ=a and cosθ+cosϕ=b, (a≠b, a≠0, b≠0) then
- tanθ+tanϕ=8ab(a2+b2)2+4b2
- cosθ⋅cosϕ=(a2+b2)2−4a24(a2+b2)
- cos(θ+ϕ)=b2−a2b2+a2
- sin(θ+ϕ)=4ab(a2+b2)+2b2
Q. If sin(A+B)sin(A−B)=x+yx−y, then tanAtanB is equal to
- xy
- yx
- −yx
- −xy
Q. If sinθ=nsin(θ+2α), then the value of tan(θ+α) is
(where n is a constant)
(where n is a constant)
- 1−n1+ncotα
- 1−n1+ntanα
- 1+n1−ntanα
- 1+n1−ncotα