A(0,6), B(8,12), C(8,0) are the Co-ordinate of vertices of triangle ABC. Then...... 1. Co−ordinate of centroidp. (20,6)2. Co−ordinate of In centreq. (0,16)3. Co−ordinateofExcentrer. (163),6)s. (0,−4)t. (5,6)
1-r 2 - t 3-p
1-r 2 - t 3-q
1-r 2 - t 3-s
1. Co-ordinate of centroid for △ABC
X=x1+x2+x33
=0+8+83=163
Y=y1+y2+y33=6+12+03=6
Co-ordinate of centroid G(163,6)
2. In △ ABC
Side AB=C=√(0−8)2+(6−12)2
=√(64+36)
=10
Side BC=a=√(8−8)2+(12−0)2=12
Side CA=b=√(8−0)2+(6−0)2=10
Co-ordinate of incentre I(x,y)
X=ax1+bx2+cx3a+b+c
X=12×0+10×8+10×312+10+10=16032=5
X=12×6+10×12+10×012+10+10=19232=6
Co-ordinates of incentre (5,6)
3. Co-ordinate of Ex-centre
There will be three excentre for O triangle
Excentre touching the side BC
z1(x,y), x=ax1+x2+cx3−a+b+c=−12×0+10×0+10×8−12+10+10=1608=20
y=−ay1+by2+cy3−a+b+c=−12×6+10×12+10×0−12+10+10=488=6
z1(20,6)
Excentre touching the side AC
z2(x,y), x=ax1−bx2+cx3a−b+c=12×0−10×3+10×012−10+10=0
Y=ay1−by2+cy3a−b+c=12×6−10×12+10×812−10+10=−4812=−4
z2(0,−4)
Excentre touching the side AB
z3(x,y), x=ax1+bx2−cx3a+b−c=12×0+10×3−10×812+10−10=0
Y=ay1−by2+cy3a+b−c=12×6−10×12−10×012+10−10=16
z3(0,16)
Three excentre are z1(20,6) touching the side BC
z2(0,−4) touching the side CA
z3(0,16) touching the side AB