A conducting square frame of side ‘a‘ and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity ‘V‘. The emf induced in the frame will be proportional to :
1(2x−a)(2x+a)
See figure alongside.
Let x be the distance of the centre of the frame from the long straight wire carrying current I.
Consider the point P at a distance y from the long straight wire carrying current I.
Strength of magnetic induction at point P is given by
B=μ04π21y
Integrating over y from y = y=(x−a2) to y=(x+a2)
We get
∫x+a2x−a2Bdy=∫x+a2x−a2Bdy=μ04π2Iydy=μ0Ia2πln[y](x+a2)(x−a2)=μ0I2πInx+a2x−a2
Total flux contained in the square frame is
ϕ=μ0Ia2πIn[x+a2x−a2]
Rate of change of flux is
dϕdt=μ0Ia2πddt[ln[x+a2x−a2]]=μ0Ia2π[x−a2x+a2]ddt[x+a2x−a2]
=μ0Ia2π[2x−a2x+a](x−a2)ddt(x+a2)−(x+a2)ddt(x−a2)(x−a2)2
=μ0Ia2π[2x−a2x+a]4(x−a2)2..[(x−a2)v−(x−a2)]
=2μ0Ia2π1(2x−a)(2x+a)v[−a]=−=2μ0Ia2vπ1(2x−a)(2x+a)
ε=−dϕdt=2μ0Ia2vπ1(2x−a)(2x+a)
εa1(2x−a)(2x+a)