CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

A container shaped like a right circular cylinder having diameter 12 cm and height 15 cm is full of ice cream. The ice cream is to be filled into cones of height 12 cm and diameter 6 cm, having a hemispherical shape on the top. Find the number of such cones which can be filled with ice cream.


Solution

Height (h1) of cylindrical container = 15 cm

Radius (r1) of circular end of container =

Radius (r2) of circular end of ice-cream cone =

Height (h2) of conical part of ice-cream cone = 12 cm

Let n ice-cream cones be filled with ice-cream of the container.

Volume of ice-cream in cylinder = n × (Volume of 1 ice-cream cone + Volume of hemispherical shape on the top)

Therefore, 10 ice-cream cones can be filled with the ice-cream in the container.


Mathematics
Math
Standard X

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
Same exercise questions
View More


similar_icon
People also searched for
View More



footer-image