Question

# A cricketer has a mean score of 58 runs in 9 innings. Find how many runs are to be scored in the 10th inning to raise his mean score to 61.

Open in App
Solution

## Dear Student, $\mathrm{Given},\mathrm{mean}\mathrm{score}\mathrm{in}9\mathrm{innings}=58\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathrm{we}\mathrm{know},\mathrm{mean}=\frac{\mathrm{total}\mathrm{value}}{\mathrm{total}\mathrm{count}}=\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}....\mathrm{n}}{\mathrm{n}}\phantom{\rule{0ex}{0ex}}\mathrm{let}\mathrm{total}\mathrm{score}\mathrm{in}9\mathrm{innings}\mathrm{be}\mathrm{n}\phantom{\rule{0ex}{0ex}}⇒\frac{\mathrm{n}}{9}=58\phantom{\rule{0ex}{0ex}}⇒\mathrm{n}=58×9=522\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathrm{Now},\mathrm{we}\mathrm{want}\mathrm{to}\mathrm{raise}\mathrm{the}\mathrm{mean}\mathrm{score}\mathrm{to}61\mathrm{in}10\mathrm{innings},\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathrm{let}\mathrm{the}\mathrm{score}\mathrm{in}10\mathrm{th}\mathrm{inning}\mathrm{be}\mathrm{x}\phantom{\rule{0ex}{0ex}}⇒\frac{522+\mathrm{x}}{10}=61\phantom{\rule{0ex}{0ex}}⇒\mathrm{x}=610-522\phantom{\rule{0ex}{0ex}}⇒\mathrm{x}=88\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{the}\mathbf{}\mathbf{score}\mathbf{}\mathbf{in}\mathbf{}\mathbf{10}\mathbf{th}\mathbf{}\mathbf{inning}\mathbf{=}\mathbf{88}$ Regards

Suggest Corrections
0
Related Videos
Median for an un-gropued data
MATHEMATICS
Watch in App