Question 9 A ΔABC is right angled at A. L is a point on BC such that AL ⊥ BC. Prove that ∠BAL=∠ACB.
Open in App
Solution
In ΔABC,∠A=90∘andAL⊥BC. To prove: ∠BAL=∠ACB Proof: In ΔABCandΔ∠LAC,∠BAC=∠ALC[each90∘]⋯(i) and∠ABC=∠ABL[commonangle]⋯(ii)
On adding equations (i) and (ii), we get, ∠BAC+∠ABC=∠ALC+∠ABL⋯(iii) Again, in ΔABC, ∠BAC+∠ACB+∠ABC=180∘ [sum of all angles of a triangle is 180∘] ⇒∠BAC+∠ABC=180−∠ACB . . . .(iv) inΔABL, ∠ABL+∠ALB+∠BAL=180∘ [sum of all angles of a triangle is 180∘] ⇒∠ABL+∠ALC=180∘−∠BAL[∵∠ALC=∠ALB=90∘]...(v) On substituting the value from equations (iv) and (v) in Eq. (iii), we get, 180∘−∠ACB=180∘−∠BAL ∠ACB=∠BAL