a) Length of the smallest side is x - d.
Let the length of the other two sides is x, x + d.
Using Pythagoras Theorem,
(x+d)2=x2+(x−d)2
x2+2xd+d2=x2+x2−2xd+d2
x2=4xd
x=4d
Hence length of the sides is,
x−d=4d−d=3d
x=4d
x+d=4d+d=5d
b) Let x−d,x,x+d be the sides of a right angled triangle in arithmetic progression. Using Pythagoras Theorem,
(x+d)2=x2+(x−d)2
x2+2xd+d2=x2+x2−2xd+d2
x2=4xd
x=4d
Hence length of the sides is,
x−d=4d−d=3d
x=4d
x+d=4d+d=5d
Hence the sides 3d, 4d, 5d are similar to pythagorean triplet sieds 3, 4, 5.