  Question

A manufacturer produces three products $$x, y, z$$ which he sells in two markets. Annual sales are indicated below: Market Products$$I$$$$10,000$$$$2,000$$$$18,000$$$$II$$$$6,000$$$$20,000$$$$8,000$$(a) If unit sale prices of $$x, y$$ and $$z$$ are $$Rs. 2.50$$, $$Rs. 1.50$$ and $$Rs. 1.00$$, respectively, find the total revenue in each market with the help of matrix algebra.(b) If the unit costs of the above three commodities are $$Rs. 2.00, Rs. 1.00$$ and $$50$$ paise respectively. Find the gross profit.

Solution

(a) The unit sale prices of $$x, y$$ and $$z$$ are respectively$$Rs. 2.50, Rs. 1.50$$ and $$Rs. 1.00$$.Total revenue in market $$I$$ can be represented as:$$\displaystyle \left[ \begin{matrix} 10000 & 2000 & 18000 \end{matrix} \right] \left[ \begin{matrix} 2.50 \\ 1.50 \\ 1.00 \end{matrix} \right]$$$$\displaystyle =10000\times 2.50+2000\times 1.50+18000\times 1.00$$$$\displaystyle =25000+3000+18000$$$$\displaystyle =46000$$Total revenue in market $$II$$ can be represented as:$$\displaystyle \left[ \begin{matrix} 6000 & 20000 & 8000 \end{matrix} \right] \left[ \begin{matrix} 2.50 \\ 1.50 \\ 1.00 \end{matrix} \right]$$$$\displaystyle =6000\times 2.50+20000\times 1.50+8000\times 1.00$$$$\displaystyle =15000+30000+8000$$$$\displaystyle =53000$$So, the total revenue in market $$I$$ is Rs 46000 and in market $$II$$ is $$Rs. 53000$$.(b) The unit cost prices of $$x,y$$ and $$z$$ are respectively given as $$Rs. 2.00$$, $$Rs. 1.00$$ and $$50$$ paise.So, the total cost prices of all the products in market $$I$$ can be represented as:$$\displaystyle \left[ \begin{matrix} 10000 & 2000 & 18000 \end{matrix} \right] \left[ \begin{matrix} 2.00 \\ 1.00 \\ 0.50 \end{matrix} \right]$$$$\displaystyle =10000\times 2.00+2000\times 1.00+18000\times 0.50$$$$\displaystyle =20000+2000+9000$$$$\displaystyle =31000$$Since, the total revenue in market $$I$$ is $$Rs. 46000$$.So, the gross profit in this market is $$Rs 46000-Rs 31000 =Rs 15000$$.The total cost prices of all the products in market $$II$$ can be represented as:$$\displaystyle \left[ \begin{matrix} 6000 & 20000 & 8000 \end{matrix} \right] \left[ \begin{matrix} 2.00 \\ 1.00 \\ 0.50 \end{matrix} \right]$$$$\displaystyle =6000\times 2.00+20000\times 1.00+8000\times 0.50$$$$\displaystyle =12000+20000+4000$$$$\displaystyle =Rs36000$$Since, the total revenue in market II is $$Rs. 53000$$.So, the gross profit in this market is $$Rs.53000 - Rs.36000 =Rs.17000$$.MathematicsNCERTStandard XII

Suggest Corrections  0  Similar questions
View More  Same exercise questions
View More  People also searched for
View More 