CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

A racing car moving towards a cliff sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If $$v$$ is the velocity of sound then the velocity of the car is


A
v2
loader
B
v2
loader
C
v3
loader
D
v4
loader

Solution

The correct option is B $$\displaystyle\frac{v}{3}$$

Let velocity of car $$=v$$

$$n^{'}=n\begin{bmatrix}\displaystyle\frac{v}{v-v_s}\end{bmatrix}\;\dots (i)\;\;\;\;\;n^{"}=n^{'}\begin{bmatrix}\displaystyle\frac{v+v_s}{v}\end{bmatrix}\;\dots (ii)$$

From (i) & (ii) $$n^{"}=n\begin{bmatrix}\displaystyle\frac{v+v_{s}}{v-v_{s}}\end{bmatrix}$$

Now $$\displaystyle\frac{n^{"}}{n}=2\Rightarrow \begin{pmatrix}\displaystyle\frac{v+v_s}{v-v_s}\end{pmatrix}=2$$

$$\Rightarrow v+v_{s}=2v-2v_{s}\Rightarrow 3v_{s}=v\Rightarrow v_{s}=\displaystyle\frac{v}{3}$$


Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image