A random variable X takes values 0,1,2,3,... with probability proportional to (x+1)(15)x. Then
A
P(X=0)=1625
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
P(X≥1)=925
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
P(x≥1)=125
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
E(X)=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AP(X=0)=1625 BP(X≥1)=925 CE(X)=12 Let P(X=x)=α(x+1)(15)x,x≤0 We have ∑P(X)=1 ⇒α[1+2(15)+3(15)2+...]=1 ⇒α1(1−15)2=1⇒25α16=1⇒α=1625. Now, P(X=0)=α(0+1)(15)0=α=1625. ⇒P(X≥1)=1−P(X=0)=1−1625=925. Also, E(X)=∞∑x=0xP(X=x)=α∞∑x=0x(x+1)(15)x ⇒2516E(X)=(1)(2)(15)+(2)(3)(15)2+(3)(4)(15)3+..... ⇒516E(X)=(1)(2)(15)2+(2)(3)(15)3+..... Subtracting, we get ⇒2016E(X)=2(15)+4(15)2+6(15)3+..... =2/5(1−1/5)2=25×2516=58⇒E(X)=12.