A spherical ball of mass m and radius r rolls without slipping on a rough concave surface of large radius R. It makes small oscillations about the lowest point. Find the time period.
Let the angular velocity of the system about the point is suspension at any times be ′ω.′
Sp ve=(R−r) ω
Again ve=rω
[where ω1= rotaional velocity of the sphere ]
l=ver=(R−rr)ω ...(1)
By energy method, total energy in SHM is constant.
So, mg (R−r) (1−cos θ)+12mv2c+12Iω2= constant
∴ mg(R−r) (1−cos θ)+12m(R−r)2 ω2+12mr2(R−rr)ω2= constant
∴ mg(R−r)(1−cos θ)+12m(R−r)2 ω2+15mr2(R−rr)ω2= constant
⇒ g (R−r)(1−cos θ)+(R−r)ω2 [12+15]= constant
Taking derivative,
g (R−r)sinθdθdt=710(R−r)2 2ωdωdt
⇒ g sin θ=2×(710)(R−r)α
⇒ g sin θ=(75)(R−r)α
⇒ α=5g sin θ7 (R−r)
=5gθ7 (R−r)
∴ αθ=ω2
=5g7 (R−r)= constant
So the motion is S.H.M. again
ω=√5g7 (R−r)
⇒ T=2π √7 (R−r)5g