Byju's Answer
Standard XII
Mathematics
Standard Limits to Remove Indeterminate Form
A = tan1, B...
Question
A
=
tan
1
,
B
=
tan
2
,
C
=
tan
3
,
then the descending
order of
A
,
B
,
C
is
A
A
,
B
,
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
C
,
B
,
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A
,
C
,
B
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
B
,
C
,
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
A
,
C
,
B
We straight away see that tan2 < 0 because
Π
2
<
2
<
Π
but tan1 > 0 because 0 < 1 <
Π
2
and tan3 < 0 because
Π
2
<
3
<
Π
now
t
a
n
3
−
t
a
n
2
=
s
i
n
3
c
o
s
3
−
s
i
n
2
c
o
s
2
=
s
i
n
3
c
o
s
2
−
c
o
s
3
s
i
n
2
c
o
s
3
c
o
s
2
=
s
i
n
1
c
o
s
3
c
o
s
2
>
0
because
sin
1
>
0
a
n
d
cos
3
<
0
a
n
d
cos
2
<
0
because
Π
2
<
2
,
3
<
Π
so
tan
1
>
tan
3
>
tan
2
Suggest Corrections
0
Similar questions
Q.
If
A
=
tan
1
,
B
=
tan
2
and
C
=
tan
3
,
then the descending order of
A
,
B
and
C
is
Q.
If
A
=
tan
1
,
B
=
tan
2
and
C
=
tan
3
,
then the descending order of
A
,
B
and
C
is
Q.
The sides
a
,
b
,
c
of
△
A
B
C
,
are in A.P.If
cos
α
=
a
b
+
c
,
cos
β
=
b
c
+
a
,
cos
γ
=
c
a
+
b
then
tan
2
α
2
+
tan
2
γ
2
=
Q.
The value of
tan
1
2
A
(
a
−
b
)
(
a
−
c
)
+
tan
1
2
B
(
b
−
c
)
(
b
−
a
)
+
tan
1
2
C
(
c
−
a
)
(
c
−
b
)
is equal to
Q.
Prove that
tan
1
2
A
(
a
−
b
)
(
a
−
c
)
+
tan
1
2
B
(
b
−
c
)
(
b
−
a
)
+
tan
1
2
C
(
c
−
a
)
(
c
−
b
)
=
1
S
.
View More
Related Videos
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Explore more
Standard Limits to Remove Indeterminate Form
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app