CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

A uniform chain of length $$l$$ and mass $$m$$ lies on a smooth horizontal table with its length perpendicular to the edge of the table and small part overhanging. The chain starts sliding down from rest due to the weight of hanging part. The acceleration and velocity of the chain when length of the hanging portion is $$x$$


A
gxl,gx2l
loader
B
gxl,gx
loader
C
gxl,gl
loader
D
gxl,g(lx)
loader

Solution

The correct option is A $$\dfrac{gx}{l},\sqrt{\dfrac{gx^{2}}{l}}$$
F when hanging length is $$x = \dfrac{mx}{L}.g$$

$$acc=\dfrac{F}{m}=\dfrac{gx}{l}=\dfrac{dv}{dt}=\dfrac{dv}{dx}.v$$

$$\Rightarrow \dfrac{v^{2}}{2}=\dfrac{gx^{2}}{2l}$$

$$\Rightarrow v=\sqrt{\dfrac{gx^{2}}{L}}$$

54783_3740_ans.jpg

Physics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image