AB and CD are two parallel chords of length 8 cm and 6 cm respectively. If they are 1 cm apart and lie on the same side of the centre of the circle. The radius of the circle is
A
3 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
8cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 5cm Given−AB=8cmandCD=6cmaretwoparallelchorddsofacirclewithcetreO.ThedistancebetweenAB&CDis1cm.Tofindout−Theradiusofthegivencircle=?Solution−WedropperpendicularOMonABfromO.OMmeetsABatM.OMisextendedtomeetCDatN.OA&OCarejoined.∴OA&OCareradiiofthegivencircle.OM⊥AB⟹∠AMO=90o=∠CNO(correspondinganglesoftwoparallellines)SoON⊥CD.SoMNisthedistancebetweenAB&CDi.eMN=1cm.LetOM=xcm,thenON=(x+1)cm.NowOM⊥AB⟹AM=12AB=12×8cm=4cm(sincetheperpendicular,fromthecentreofacircletoanyofitschords,bisectsthelatter).AgainOM⊥AB.∴ΔOAMisarightonewithOAashypotenuse.So,byPythagorastheorem,wegetOA=√OM2+AM2=√x2+42......(i).Similarly,ON⊥CD⟹CN=12CD=12×6cm=3cm(sincetheperpendicular,fromthecentreofacircletoanyofitschords,bisectsthelatter).AgainON⊥CD.∴ΔOCNisarightonewithOC=OAashypotenuse.So,byPythagorastheorem,wegetOC=OA=√ON2+CN2=√(x+1)2+32......(ii).Comparing(i)&(ii)weget√x2+42=√(x+1)2+32⟹2x=6⟹x=3cm.So,consideringΔOMA∠OMA=90o.∴ΔOMAisarightonewithOAashypotenuse.So,byPythagorastheorem,wegetOA=√OM2+AM2=√x2+42=√32+42cm=5cm.Stheradiusofthegivencircleis5cm.Ans−OptionD.